API
Types defined in the package
GLM.LinearModel
— TypeGLM.DensePredChol
— TypeDensePredChol{T}
A LinPred
type with a dense Cholesky factorization of X'X
Members
X
: model matrix of sizen
×p
withn ≥ p
. Should be full column rank.beta0
: base coefficient vector of lengthp
delbeta
: increment to coefficient vector, also of lengthp
scratchbeta
: scratch vector of lengthp
, used inlinpred!
methodchol
: aCholesky
object created fromX'X
, possibly using row weights.scratchm1
: scratch Matrix{T} of the same size asX
scratchm2
: scratch Matrix{T} os the same size asX'X
GLM.DensePredQR
— TypeDensePredQR
A LinPred
type with a dense, unpivoted QR decomposition of X
Members
X
: Model matrix of sizen
×p
withn ≥ p
. Should be full column rank.beta0
: base coefficient vector of lengthp
delbeta
: increment to coefficient vector, also of lengthp
scratchbeta
: scratch vector of lengthp
, used inlinpred!
methodqr
: aQRCompactWY
object created fromX
, with optional row weights.
GLM.LmResp
— TypeLmResp
Encapsulates the response for a linear model
Members
mu
: current value of the mean response vector or fitted valueoffset
: optional offset added to the linear predictor to formmu
wts
: optional vector of prior frequency (a.k.a. case) weights for observationsy
: observed response vector
Either or both offset
and wts
may be of length 0
GLM.GlmResp
— TypeGlmResp
The response vector and various derived vectors in a generalized linear model.
GLM.LinPred
— TypeLinPred
Abstract type representing a linear predictor
GLM.ModResp
— TypeModResp
Abstract type representing a model response vector
Constructors for models
The most general approach to fitting a model is with the fit
function, as in
julia> using Random
julia> fit(LinearModel, hcat(ones(10), 1:10), randn(MersenneTwister(12321), 10))
LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}:
Coefficients:
────────────────────────────────────────────────────────────────
Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
────────────────────────────────────────────────────────────────
x1 0.717436 0.775175 0.93 0.3818 -1.07012 2.50499
x2 -0.152062 0.124931 -1.22 0.2582 -0.440153 0.136029
────────────────────────────────────────────────────────────────
This model can also be fit as
julia> using Random
julia> lm(hcat(ones(10), 1:10), randn(MersenneTwister(12321), 10))
LinearModel{GLM.LmResp{Vector{Float64}}, GLM.DensePredChol{Float64, LinearAlgebra.CholeskyPivoted{Float64, Matrix{Float64}, Vector{Int64}}}}:
Coefficients:
────────────────────────────────────────────────────────────────
Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95%
────────────────────────────────────────────────────────────────
x1 0.717436 0.775175 0.93 0.3818 -1.07012 2.50499
x2 -0.152062 0.124931 -1.22 0.2582 -0.440153 0.136029
────────────────────────────────────────────────────────────────
GLM.lm
— Functionlm(formula, data, allowrankdeficient=false;
[wts::AbstractVector], dropcollinear::Bool=true)
lm(X::AbstractMatrix, y::AbstractVector;
wts::AbstractVector=similar(y, 0), dropcollinear::Bool=true)
Fit a linear model to data. An alias for fit(LinearModel, X, y; wts=wts, dropcollinear=dropcollinear)
In the first method, formula
must be a StatsModels.jl Formula
object and data
a table (in the Tables.jl definition, e.g. a data frame). In the second method, X
must be a matrix holding values of the independent variable(s) in columns (including if appropriate the intercept), and y
must be a vector holding values of the dependent variable.
The keyword argument wts
can be a Vector
specifying frequency weights for observations. Such weights are equivalent to repeating each observation a number of times equal to its weight. Do note that this interpretation gives equal point estimates but different standard errors from analytical (a.k.a. inverse variance) weights and from probability (a.k.a. sampling) weights which are the default in some other software.
dropcollinear
controls whether or not lm
accepts a model matrix which is less-than-full rank. If true
(the default), only the first of each set of linearly-dependent columns is used. The coefficient for redundant linearly dependent columns is 0.0
and all associated statistics are set to NaN
.
GLM.glm
— Functionglm(formula, data,
distr::UnivariateDistribution, link::Link = canonicallink(distr); <keyword arguments>)
glm(X::AbstractMatrix, y::AbstractVector,
distr::UnivariateDistribution, link::Link = canonicallink(distr); <keyword arguments>)
Fit a generalized linear model to data. Alias for fit(GeneralizedLinearModel, ...)
.
In the first method, formula
must be a StatsModels.jl Formula
object and data
a table (in the Tables.jl definition, e.g. a data frame). In the second method, X
must be a matrix holding values of the independent variable(s) in columns (including if appropriate the intercept), and y
must be a vector holding values of the dependent variable. In both cases, distr
must specify the distribution, and link
may specify the link function (if omitted, it is taken to be the canonical link for distr
; see Link
for a list of built-in links).
Keyword Arguments
dropcollinear::Bool=true
: Controls whether or notlm
accepts a model matrix which is less-than-full rank. Iftrue
(the default) the coefficient for redundant linearly dependent columns is0.0
and all associated statistics are set toNaN
. Typically from a set of linearly-dependent columns the last ones are identified as redundant (however, the exact selection of columns identified as redundant is not guaranteed).dofit::Bool=true
: Determines whether model will be fitwts::Vector=similar(y,0)
: Prior frequency (a.k.a. case) weights of observations. Such weights are equivalent to repeating each observation a number of times equal to its weight. Do note that this interpretation gives equal point estimates but different standard errors from analytical (a.k.a. inverse variance) weights and from probability (a.k.a. sampling) weights which are the default in some other software. Can be length 0 to indicate no weighting (default).offset::Vector=similar(y,0)
: offset added toXβ
to formeta
. Can be of length 0verbose::Bool=false
: Display convergence information for each iterationmaxiter::Integer=30
: Maximum number of iterations allowed to achieve convergenceatol::Real=1e-6
: Convergence is achieved when the relative change in deviance is less thanmax(rtol*dev, atol)
.rtol::Real=1e-6
: Convergence is achieved when the relative change in deviance is less thanmax(rtol*dev, atol)
.minstepfac::Real=0.001
: Minimum line step fraction. Must be between 0 and 1.start::AbstractVector=nothing
: Starting values for beta. Should have the same length as the number of columns in the model matrix.
GLM.negbin
— Functionnegbin(formula, data, [link::Link];
<keyword arguments>)
negbin(X::AbstractMatrix, y::AbstractVector, [link::Link];
<keyword arguments>)
Fit a negative binomial generalized linear model to data, while simultaneously estimating the shape parameter θ. Extra arguments and keyword arguments will be passed to glm
.
In the first method, formula
must be a StatsModels.jl Formula
object and data
a table (in the Tables.jl definition, e.g. a data frame). In the second method, X
must be a matrix holding values of the independent variable(s) in columns (including if appropriate the intercept), and y
must be a vector holding values of the dependent variable. In both cases, link
may specify the link function (if omitted, it is taken to be NegativeBinomial(θ)
).
Keyword Arguments
StatsAPI.fit
— Functionfit(LinearModel, formula, data, allowrankdeficient=false;
[wts::AbstractVector], dropcollinear::Bool=true)
fit(LinearModel, X::AbstractMatrix, y::AbstractVector;
wts::AbstractVector=similar(y, 0), dropcollinear::Bool=true)
Fit a linear model to data.
In the first method, formula
must be a StatsModels.jl Formula
object and data
a table (in the Tables.jl definition, e.g. a data frame). In the second method, X
must be a matrix holding values of the independent variable(s) in columns (including if appropriate the intercept), and y
must be a vector holding values of the dependent variable.
The keyword argument wts
can be a Vector
specifying frequency weights for observations. Such weights are equivalent to repeating each observation a number of times equal to its weight. Do note that this interpretation gives equal point estimates but different standard errors from analytical (a.k.a. inverse variance) weights and from probability (a.k.a. sampling) weights which are the default in some other software.
dropcollinear
controls whether or not lm
accepts a model matrix which is less-than-full rank. If true
(the default), only the first of each set of linearly-dependent columns is used. The coefficient for redundant linearly dependent columns is 0.0
and all associated statistics are set to NaN
.
fit(GeneralizedLinearModel, formula, data,
distr::UnivariateDistribution, link::Link = canonicallink(d); <keyword arguments>)
fit(GeneralizedLinearModel, X::AbstractMatrix, y::AbstractVector,
distr::UnivariateDistribution, link::Link = canonicallink(d); <keyword arguments>)
Fit a generalized linear model to data.
In the first method, formula
must be a StatsModels.jl Formula
object and data
a table (in the Tables.jl definition, e.g. a data frame). In the second method, X
must be a matrix holding values of the independent variable(s) in columns (including if appropriate the intercept), and y
must be a vector holding values of the dependent variable. In both cases, distr
must specify the distribution, and link
may specify the link function (if omitted, it is taken to be the canonical link for distr
; see Link
for a list of built-in links).
Keyword Arguments
dropcollinear::Bool=true
: Controls whether or notlm
accepts a model matrix which is less-than-full rank. Iftrue
(the default) the coefficient for redundant linearly dependent columns is0.0
and all associated statistics are set toNaN
. Typically from a set of linearly-dependent columns the last ones are identified as redundant (however, the exact selection of columns identified as redundant is not guaranteed).dofit::Bool=true
: Determines whether model will be fitwts::Vector=similar(y,0)
: Prior frequency (a.k.a. case) weights of observations. Such weights are equivalent to repeating each observation a number of times equal to its weight. Do note that this interpretation gives equal point estimates but different standard errors from analytical (a.k.a. inverse variance) weights and from probability (a.k.a. sampling) weights which are the default in some other software. Can be length 0 to indicate no weighting (default).offset::Vector=similar(y,0)
: offset added toXβ
to formeta
. Can be of length 0verbose::Bool=false
: Display convergence information for each iterationmaxiter::Integer=30
: Maximum number of iterations allowed to achieve convergenceatol::Real=1e-6
: Convergence is achieved when the relative change in deviance is less thanmax(rtol*dev, atol)
.rtol::Real=1e-6
: Convergence is achieved when the relative change in deviance is less thanmax(rtol*dev, atol)
.minstepfac::Real=0.001
: Minimum line step fraction. Must be between 0 and 1.start::AbstractVector=nothing
: Starting values for beta. Should have the same length as the number of columns in the model matrix.
Model methods
StatsAPI.deviance
— Functiondeviance(obj::LinearModel)
For linear models, the deviance is equal to the residual sum of squares (RSS).
GLM.dispersion
— Functiondispersion(m::AbstractGLM, sqr::Bool=false)
Return the estimated dispersion (or scale) parameter for a model's distribution, generally written σ for linear models and ϕ for generalized linear models. It is, by definition, equal to 1 for the Bernoulli, Binomial, and Poisson families.
If sqr
is true
, the squared dispersion parameter is returned.
GLM.ftest
— Functionftest(mod::LinearModel)
Perform an F-test to determine whether model mod
fits significantly better than the null model (i.e. which includes only the intercept).
julia> dat = DataFrame(Result=[1.1, 1.2, 1, 2.2, 1.9, 2, 0.9, 1, 1, 2.2, 2, 2],
Treatment=[1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2]);
julia> model = lm(@formula(Result ~ 1 + Treatment), dat);
julia> ftest(model.model)
F-test against the null model:
F-statistic: 241.62 on 12 observations and 1 degrees of freedom, p-value: <1e-07
ftest(mod::LinearModel...; atol::Real=0.0)
For each sequential pair of linear models in mod...
, perform an F-test to determine if the one model fits significantly better than the other. Models must have been fitted on the same data, and be nested either in forward or backward direction.
A table is returned containing consumed degrees of freedom (DOF), difference in DOF from the preceding model, sum of squared residuals (SSR), difference in SSR from the preceding model, R², difference in R² from the preceding model, and F-statistic and p-value for the comparison between the two models.
This function can be used to perform an ANOVA by testing the relative fit of two models to the data
Optional keyword argument atol
controls the numerical tolerance when testing whether the models are nested.
Examples
Suppose we want to compare the effects of two or more treatments on some result. Because this is an ANOVA, our null hypothesis is that Result ~ 1
fits the data as well as Result ~ 1 + Treatment
.
julia> dat = DataFrame(Result=[1.1, 1.2, 1, 2.2, 1.9, 2, 0.9, 1, 1, 2.2, 2, 2],
Treatment=[1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2],
Other=categorical([1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1]));
julia> nullmodel = lm(@formula(Result ~ 1), dat);
julia> model = lm(@formula(Result ~ 1 + Treatment), dat);
julia> bigmodel = lm(@formula(Result ~ 1 + Treatment + Other), dat);
julia> ftest(nullmodel.model, model.model)
F-test: 2 models fitted on 12 observations
─────────────────────────────────────────────────────────────────
DOF ΔDOF SSR ΔSSR R² ΔR² F* p(>F)
─────────────────────────────────────────────────────────────────
[1] 2 3.2292 0.0000
[2] 3 1 0.1283 -3.1008 0.9603 0.9603 241.6234 <1e-07
─────────────────────────────────────────────────────────────────
julia> ftest(nullmodel.model, model.model, bigmodel.model)
F-test: 3 models fitted on 12 observations
─────────────────────────────────────────────────────────────────
DOF ΔDOF SSR ΔSSR R² ΔR² F* p(>F)
─────────────────────────────────────────────────────────────────
[1] 2 3.2292 0.0000
[2] 3 1 0.1283 -3.1008 0.9603 0.9603 241.6234 <1e-07
[3] 5 2 0.1017 -0.0266 0.9685 0.0082 1.0456 0.3950
─────────────────────────────────────────────────────────────────
GLM.installbeta!
— Functioninstallbeta!(p::LinPred, f::Real=1.0)
Install pbeta0 .+= f * p.delbeta
and zero out p.delbeta
. Return the updated p.beta0
.
StatsAPI.nobs
— Functionnobs(obj::LinearModel)
nobs(obj::GLM)
For linear and generalized linear models, returns the number of rows, or, when prior weights are specified, the sum of weights.
StatsAPI.nulldeviance
— Functionnulldeviance(obj::LinearModel)
For linear models, the deviance of the null model is equal to the total sum of squares (TSS).
StatsAPI.predict
— Functionpredict(mm::LinearModel, newx::AbstractMatrix;
interval::Union{Symbol,Nothing} = nothing, level::Real = 0.95)
If interval
is nothing
(the default), return a vector with the predicted values for model mm
and new data newx
. Otherwise, return a vector with the predicted values, as well as vectors with the lower and upper confidence bounds for a given level
(0.95 equates alpha = 0.05). Valid values of interval
are :confidence
delimiting the uncertainty of the predicted relationship, and :prediction
delimiting estimated bounds for new data points.
predict(mm::AbstractGLM, newX::AbstractMatrix; offset::FPVector=eltype(newX)[],
interval::Union{Symbol,Nothing}=nothing, level::Real = 0.95,
interval_method::Symbol = :transformation)
Return the predicted response of model mm
from covariate values newX
and, optionally, an offset
.
If interval=:confidence
, also return upper and lower bounds for a given coverage level
. By default (interval_method = :transformation
) the intervals are constructed by applying the inverse link to intervals for the linear predictor. If interval_method = :delta
, the intervals are constructed by the delta method, i.e., by linearization of the predicted response around the linear predictor. The :delta
method intervals are symmetric around the point estimates, but do not respect natural parameter constraints (e.g., the lower bound for a probability could be negative).
Missing docstring for StatsModels.isnested
. Check Documenter's build log for details.
Links and methods applied to them
GLM.Link
— TypeLink
An abstract type whose subtypes refer to link functions.
GLM currently supports the following links: CauchitLink
, CloglogLink
, IdentityLink
, InverseLink
, InverseSquareLink
, LogitLink
, LogLink
, NegativeBinomialLink
, PowerLink
, ProbitLink
, SqrtLink
.
Subtypes of Link
are required to implement methods for GLM.linkfun
, GLM.linkinv
, GLM.mueta
, and GLM.inverselink
.
GLM.Link01
— TypeLink01
An abstract subtype of Link
which are links defined on (0, 1)
GLM.CauchitLink
— TypeCauchitLink
A Link01
corresponding to the standard Cauchy distribution, Distributions.Cauchy
.
GLM.CloglogLink
— TypeCloglogLink
A Link01
corresponding to the extreme value (or log-Weibull) distribution. The link is the complementary log-log transformation, log(1 - log(-μ))
.
GLM.IdentityLink
— TypeIdentityLink
The canonical Link
for the Normal
distribution, defined as η = μ
.
GLM.InverseLink
— TypeInverseLink
The canonical Link
for Distributions.Gamma
distribution, defined as η = inv(μ)
.
GLM.InverseSquareLink
— TypeInverseSquareLink
The canonical Link
for Distributions.InverseGaussian
distribution, defined as η = inv(abs2(μ))
.
GLM.LogitLink
— TypeLogitLink
The canonical Link01
for Distributions.Bernoulli
and Distributions.Binomial
. The inverse link, linkinv
, is the c.d.f. of the standard logistic distribution, Distributions.Logistic
.
GLM.LogLink
— TypeLogLink
The canonical Link
for Distributions.Poisson
, defined as η = log(μ)
.
GLM.NegativeBinomialLink
— TypeNegativeBinomialLink
The canonical Link
for Distributions.NegativeBinomial
distribution, defined as η = log(μ/(μ+θ))
. The shape parameter θ has to be fixed for the distribution to belong to the exponential family.
GLM.PowerLink
— TypePowerLink
A Link
defined as η = μ^λ
when λ ≠ 0
, and to η = log(μ)
when λ = 0
, i.e. the class of transforms that use a power function or logarithmic function.
Many other links are special cases of PowerLink
:
IdentityLink
when λ = 1.SqrtLink
when λ = 0.5.LogLink
when λ = 0.InverseLink
when λ = -1.InverseSquareLink
when λ = -2.
GLM.ProbitLink
— TypeProbitLink
A Link01
whose linkinv
is the c.d.f. of the standard normal distribution, Distributions.Normal()
.
GLM.SqrtLink
— TypeSqrtLink
A Link
defined as η = √μ
GLM.linkfun
— FunctionGLM.linkfun(L::Link, μ::Real)
Return η
, the value of the linear predictor for link L
at mean μ
.
Examples
julia> μ = inv(10):inv(5):1
0.1:0.2:0.9
julia> show(linkfun.(LogitLink(), μ))
[-2.197224577336219, -0.8472978603872036, 0.0, 0.8472978603872034, 2.1972245773362196]
GLM.linkinv
— FunctionGLM.linkinv(L::Link, η::Real)
Return μ
, the mean value, for link L
at linear predictor value η
.
Examples
julia> μ = 0.1:0.2:1
0.1:0.2:0.9
julia> η = logit.(μ);
julia> linkinv.(LogitLink(), η) ≈ μ
true
GLM.mueta
— FunctionGLM.mueta(L::Link, η::Real)
Return the derivative of linkinv
, dμ/dη
, for link L
at linear predictor value η
.
Examples
julia> mueta(LogitLink(), 0.0)
0.25
julia> mueta(CloglogLink(), 0.0) ≈ 0.36787944117144233
true
julia> mueta(LogLink(), 2.0) ≈ 7.38905609893065
true
GLM.inverselink
— FunctionGLM.inverselink(L::Link, η::Real)
Return a 3-tuple of the inverse link, the derivative of the inverse link, and when appropriate, the variance function μ*(1 - μ)
.
The variance function is returned as NaN unless the range of μ is (0, 1)
Examples
julia> GLM.inverselink(LogitLink(), 0.0)
(0.5, 0.5, 0.25)
julia> μ, oneminusμ, variance = GLM.inverselink(CloglogLink(), 0.0);
julia> μ + oneminusμ ≈ 1
true
julia> μ*(1 - μ) ≈ variance
false
julia> isnan(last(GLM.inverselink(LogLink(), 2.0)))
true
GLM.canonicallink
— Functioncanonicallink(D::Distribution)
Return the canonical link for distribution D
, which must be in the exponential family.
Examples
julia> canonicallink(Bernoulli())
LogitLink()
GLM.glmvar
— FunctionGLM.glmvar(D::Distribution, μ::Real)
Return the value of the variance function for D
at μ
The variance of D
at μ
is the product of the dispersion parameter, ϕ, which does not depend on μ
and the value of glmvar
. In other words glmvar
returns the factor of the variance that depends on μ
.
Examples
julia> μ = 1/6:1/3:1;
julia> glmvar.(Normal(), μ) # constant for Normal()
3-element Vector{Float64}:
1.0
1.0
1.0
julia> glmvar.(Bernoulli(), μ) ≈ μ .* (1 .- μ)
true
julia> glmvar.(Poisson(), μ) == μ
true
julia> glmvar.(Geometric(), μ) ≈ μ .* (1 .+ μ)
true
GLM.mustart
— FunctionGLM.mustart(D::Distribution, y, wt)
Return a starting value for μ.
For some distributions it is appropriate to set μ = y
to initialize the IRLS algorithm but for others, notably the Bernoulli, the values of y
are not allowed as values of μ
and must be modified.
Examples
julia> GLM.mustart(Bernoulli(), 0.0, 1) ≈ 1/4
true
julia> GLM.mustart(Bernoulli(), 1.0, 1) ≈ 3/4
true
julia> GLM.mustart(Binomial(), 0.0, 10) ≈ 1/22
true
julia> GLM.mustart(Normal(), 0.0, 1) ≈ 0
true
julia> GLM.mustart(Geometric(), 4, 1) ≈ 4
true
GLM.devresid
— Functiondevresid(D, y, μ::Real)
Return the squared deviance residual of μ
from y
for distribution D
The deviance of a GLM can be evaluated as the sum of the squared deviance residuals. This is the principal use for these values. The actual deviance residual, say for plotting, is the signed square root of this value
sign(y - μ) * sqrt(devresid(D, y, μ))
Examples
julia> devresid(Normal(), 0, 0.25) ≈ abs2(0.25)
true
julia> devresid(Bernoulli(), 1, 0.75) ≈ -2*log(0.75)
true
julia> devresid(Bernoulli(), 0, 0.25) ≈ -2*log1p(-0.25)
true
GLM.dispersion_parameter
— FunctionGLM.dispersion_parameter(D)
Does distribution D
have a separate dispersion parameter, ϕ?
Returns false
for the Bernoulli
, Binomial
and Poisson
distributions, true
otherwise.
Examples
julia> show(GLM.dispersion_parameter(Normal()))
true
julia> show(GLM.dispersion_parameter(Bernoulli()))
false
GLM.loglik_obs
— FunctionGLM.loglik_obs(D, y, μ, wt, ϕ)
Returns wt * logpdf(D(μ, ϕ), y)
where the parameters of D
are derived from μ
and ϕ
.
The wt
argument is a multiplier of the result except in the case of the Binomial
where wt
is the number of trials and μ
is the proportion of successes.
The loglikelihood of a fitted model is the sum of these values over all the observations.
GLM.cancancel
— Functioncancancel(r::GlmResp{V,D,L})
Returns true
if dμ/dη for link L
is the variance function for distribution D
When L
is the canonical link for D
the derivative of the inverse link is a multiple of the variance function for D
. If they are the same a numerator and denominator term in the expression for the working weights will cancel.