Bibliography

[1]
L. D. Brown, T. T. Cai and A. DasGupta. Interval Estimation for a Binomial Proportion. Statistical Science 16, 101–117 (2001).
[2]
A. M. Pires and C. Amado. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT-Statistical Journal, 165–197 (2008).
[3]
J. D. Gibbons and J. W. Pratt. P-Values: Interpretation and Methodology. The American Statistician 29, 20–25 (1975).
[4]
[5]
A. Agresti. Categorical Data Analysis. 3rd Edition, No. 792 of Wiley Series in Probability and Statistics (Wiley, Hoboken, NJ, 2013).
[6]
C. P. Sison and J. Glaz. Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions. Journal of the American Statistical Association 90, 366–369 (1995).
[7]
C. P. Quesenberry and D. C. Hurst. Large Sample Simultaneous Confidence Intervals for Multinomial Proportions. Technometrics 6, 191–195 (1964).
[8]
R. Z. Gold. Tests Auxiliary to $\chi^2$ Tests in a Markov Chain. The Annals of Mathematical Statistics 34, 56–74 (1963).
[9]
[10]
M. B. Brown and A. B. Forsythe. Robust Tests for the Equality of Variances. Journal of the American Statistical Association 69, 364–367 (1974).
[11]
F. W. Scholz and M. A. Stephens. K-Sample Anderson–Darling Tests. Journal of the American Statistical Association 82, 918–924 (1987).
[12]
J. P. Meyer and M. A. Seaman. Expanded Table of the Kruskal-Wallis Statistic (2008).
[13]
J. P. Meyer and M. A. Seaman. A Comparison of the Exact Kruskal-Wallis Distribution to Asymptotic Approximations for All Sample Sizes up to 105. The Journal of Experimental Education 81, 139–156 (2013).
[14]
W. J. Conover, M. E. Johnson and M. M. Johnson. A Comparative Study of Tests for Homogeneity of Variances, with Applications to the Outer Continental Shelf Bidding Data. Technometrics 23, 351–361 (1981).
[15]
S. S. Shapiro and M. B. Wilk. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52, 591–611 (1965).
[16]
P. Royston. Approximating the Shapiro-Wilk W-test for Non-Normality. Statistics and Computing 2, 117–119 (1992).
[17]
P. Royston. A Toolkit for Testing for Non-Normality in Complete and Censored Samples. The Statistician 42, 37 (1993), arXiv:10.2307/2348109.
[18]
P. Royston. Remark AS R94: A Remark on Algorithm AS 181: The W-test for Normality. Applied Statistics 44, 547 (1995), arXiv:2986146.
[19]
[20]
[21]
[22]
[23]
C. M. Urzúa. On the Correct Use of Omnibus Tests for Normality. Economics Letters 53, 247–251 (1996).
[24]
J. G. MacKinnon. Critical Values for Cointegration Tests. Working Paper 1227 (Queen's University, 2010).
[25]
[26]
T. E. Clark and K. D. West. Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis. Journal of Econometrics 135, 155–186 (2006).
[27]
T. E. Clark and K. D. West. Approximately Normal Tests for Equal Predictive Accuracy in Nested Models. Journal of Econometrics 138, 291–311 (2007).
[28]
F. X. Diebold and R. S. Mariano. Comparing Predictive Accuracy. Journal of Business & Economic Statistics 13, 253–263 (1995).
[29]
D. Harvey, S. Leybourne and P. Newbold. Testing the Equality of Prediction Mean Squared Errors. International Journal of Forecasting 13, 281–291 (1997).
[30]
H. White. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 48, 817 (1980), arXiv:1912934.
[31]
T. S. Breusch and A. R. Pagan. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 47, 1287 (1979), arXiv:1911963.
[32]
R. Koenker. A Note on Studentizing a Test for Heteroscedasticity. Journal of Econometrics 17, 107–112 (1981).
[33]