Prediction and simulation in Mixed-Effects Models
We recommend the MixedModelsSim.jl package and associated documentation for useful tools in constructing designs to simulate. For now, we'll use the sleep study data as a starting point.
using DataFrames
using MixedModels
using StatsBase
# use a DataFrame to make it easier to change things later
slp = DataFrame(MixedModels.dataset(:sleepstudy))
slpm = fit(MixedModel, @formula(reaction ~ 1 + days + (1|subj)), slp)
Linear mixed model fit by maximum likelihood
reaction ~ 1 + days + (1 | subj)
logLik -2 logLik AIC AICc BIC
-897.0393 1794.0786 1802.0786 1802.3072 1814.8505
Variance components:
Column Variance Std.Dev.
subj (Intercept) 1296.8692 36.0121
Residual 954.5279 30.8954
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
──────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
──────────────────────────────────────────────────
(Intercept) 251.405 9.50618 26.45 <1e-99
days 10.4673 0.801735 13.06 <1e-38
──────────────────────────────────────────────────
Prediction
The simplest form of prediction are the fitted values from the model: they are indeed the model's predictions for the observed data.
predict(slpm) ≈ fitted(slpm)
true
When generalizing to new data, we need to consider what happens if there are new, previously unobserved levels of the grouping variable(s). MixedModels.jl provides three options:
:error
: error on encountering unobserved levels:population
: use population values (i.e. only the fixed effects) for observations with unobserved levels:missing
: returnmissing
for observations with unobserved levels.
Providing either no prediction (:error
, :missing
) or providing the population-level values seem to be the most reasonable ways for predicting new values. For simulating new values based on previous estimates of the variance components, use simulate
.
In the case where there are no new levels of the grouping variable, all three of these methods provide the same results:
predict(slpm, slp; new_re_levels=:population) ≈ fitted(slpm)
true
predict(slpm, slp; new_re_levels=:missing) ≈ fitted(slpm)
true
predict(slpm, slp; new_re_levels=:error) ≈ fitted(slpm)
true
In the case where there are new levels of the grouping variable, these methods differ.
# create a new level
slp2 = transform(slp, :subj => ByRow(x -> (x == "S308" ? "NEW" : x)) => :subj)
180×3 DataFrame
Row │ subj days reaction
│ String Int8 Float64
─────┼────────────────────────
1 │ NEW 0 249.56
2 │ NEW 1 258.705
3 │ NEW 2 250.801
4 │ NEW 3 321.44
5 │ NEW 4 356.852
6 │ NEW 5 414.69
7 │ NEW 6 382.204
8 │ NEW 7 290.149
⋮ │ ⋮ ⋮ ⋮
174 │ S372 3 310.632
175 │ S372 4 287.173
176 │ S372 5 329.608
177 │ S372 6 334.482
178 │ S372 7 343.22
179 │ S372 8 369.142
180 │ S372 9 364.124
165 rows omitted
try
predict(slpm, slp2; new_re_levels=:error)
catch e
show(e)
end
ArgumentError("New level encountered in subj")
predict(slpm, slp2; new_re_levels=:missing)
180-element Vector{Union{Missing, Float64}}:
missing
missing
missing
missing
missing
missing
missing
missing
missing
missing
⋮
279.9221239684782
290.3894099280742
300.8566958876702
311.32398184726617
321.7912678068622
332.2585537664582
342.7258397260542
353.19312568565016
363.66041164524614
predict(slpm, slp2; new_re_levels=:population)
180-element Vector{Float64}:
251.40510484848508
261.8723908080811
272.3396767676771
282.80696272727306
293.27424868686904
303.7415346464651
314.20882060606107
324.67610656565705
335.14339252525303
345.610678484849
⋮
279.9221239684782
290.3894099280742
300.8566958876702
311.32398184726617
321.7912678068622
332.2585537664582
342.7258397260542
353.19312568565016
363.66041164524614
Currently, we do not support predicting based on a subset of the random effects.
predict
is deterministic (within the constraints of floating point) and never adds noise to the result. If you want to construct prediction intervals, then simulate
will generate new data with noise (including new values of the random effects).
For generalized linear mixed models, there is an additional keyword argument to predict
: type
specifies whether the predictions are returned on the scale of the linear predictor (:linpred
) or on the level of the response (:response)
(i.e. the level at which the values were originally observed).
cbpp = DataFrame(MixedModels.dataset(:cbpp))
cbpp.rate = cbpp.incid ./ cbpp.hsz
gm = fit(MixedModel, @formula(rate ~ 1 + period + (1|herd)), cbpp, Binomial(), wts=float(cbpp.hsz))
predict(gm, cbpp; type=:response) ≈ fitted(gm)
false
logit(x) = log(x / (1 - x))
predict(gm, cbpp; type=:linpred) ≈ logit.(fitted(gm))
false
Simulation
In contrast to predict
, simulate
and simulate!
introduce randomness. This randomness occurs both at the level of the observation-level (residual) variance and at the level of the random effects, where new conditional modes are sampled based on the specified covariance parameter (θ; see Details of the parameter estimation), which defaults to the estimated value of the model. For reproducibility, we specify a pseudorandom generator here; if none is provided, the global PRNG is taken as the default.
The simplest example of simulate
takes a fitted model and generates a new response vector based on the existing model matrices combined with noise.
using Random
ynew = simulate(MersenneTwister(42), slpm)
180-element Vector{Float64}:
283.00861574005904
296.92517678007596
321.9608558229577
322.3364745700326
396.9842436751096
317.15150692050014
348.5132411307083
378.2824298353154
302.3001342626326
425.3905773601467
⋮
314.6855844434403
350.0319264778643
293.6498076642398
375.40194314495807
324.582361638989
311.1027683741317
338.76222094115917
345.35559219294737
301.28717914641953
The simulated response can also be placed in a pre-allocated vector:
ynew2 = zeros(nrow(slp))
simulate!(MersenneTwister(42), ynew2, slpm)
ynew2 ≈ ynew
true
Or even directly replace the previous response vector in a model, at which point the model must be refit to the new values:
slpm2 = deepcopy(slpm)
refit!(simulate!(MersenneTwister(42), slpm2))
Linear mixed model fit by maximum likelihood
reaction ~ 1 + days + (1 | subj)
logLik -2 logLik AIC AICc BIC
-903.1987 1806.3974 1814.3974 1814.6259 1827.1692
Variance components:
Column Variance Std.Dev.
subj (Intercept) 2420.4286 49.1979
Residual 964.3709 31.0543
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
───────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
───────────────────────────────────────────────────
(Intercept) 263.59 12.3684 21.31 <1e-99
days 9.35638 0.805859 11.61 <1e-30
───────────────────────────────────────────────────
This inplace simulation actually forms the basis of parametricbootstrap
.
Finally, we can also simulate the response from entirely new data.
df = DataFrame(days = repeat(1:10, outer=20), subj=repeat(1:20, inner=10))
df[!, :subj] = string.("S", lpad.(df.subj, 2, "0"))
df[!, :reaction] .= 0
df
200×3 DataFrame
Row │ days subj reaction
│ Int64 String Int64
─────┼─────────────────────────
1 │ 1 S01 0
2 │ 2 S01 0
3 │ 3 S01 0
4 │ 4 S01 0
5 │ 5 S01 0
6 │ 6 S01 0
7 │ 7 S01 0
8 │ 8 S01 0
⋮ │ ⋮ ⋮ ⋮
194 │ 4 S20 0
195 │ 5 S20 0
196 │ 6 S20 0
197 │ 7 S20 0
198 │ 8 S20 0
199 │ 9 S20 0
200 │ 10 S20 0
185 rows omitted
ysim = simulate(MersenneTwister(42), slpm, df)
200-element Vector{Float64}:
262.9357707048248
276.8523317448417
301.8880107877235
302.2636295347983
376.91139863987536
297.0786618852659
328.44039609547406
358.20958480008113
282.2272892273984
405.31773232491247
⋮
336.4096634873374
274.01980819379816
232.79273026239147
281.7738595392708
296.84052804670836
379.1660196692867
305.03738411734776
358.384456848015
381.72368137904283
Note that this is a convenience method for creating a new model and then using the parameters from the old model to call simulate
on that model. In other words, this method incurs the cost of constructing a new model and then discarding it. If you could re-use that model (e.g., fitting that model as part of a simulation study), it often makes sense to do these steps to perform these steps explicitly and avoid the unnecessary construction and discarding of an intermediate model:
msim = LinearMixedModel(@formula(reaction ~ 1 + days + (1|subj)), df)
simulate!(MersenneTwister(42), msim; θ=slpm.θ, β=slpm.β, σ=slpm.σ)
response(msim) ≈ ysim
true
fit!(msim)
Linear mixed model fit by maximum likelihood
reaction ~ 1 + days + (1 | subj)
logLik -2 logLik AIC AICc BIC
-996.0696 1992.1392 2000.1392 2000.3443 2013.3325
Variance components:
Column Variance Std.Dev.
subj (Intercept) 663.5397 25.7593
Residual 1012.9884 31.8275
Number of obs: 200; levels of grouping factors: 20
Fixed-effects parameters:
───────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
───────────────────────────────────────────────────
(Intercept) 259.607 7.53747 34.44 <1e-99
days 9.46755 0.783538 12.08 <1e-32
───────────────────────────────────────────────────
For simulating from generalized linear mixed models, there is no type
option because the observation-level always occurs at the level of the response and not of the linear predictor.
Simulating the model response in place may not yield the same result as simulating into a pre-allocated or new vector, depending on choice of pseudorandom number generator. Random number generation in Julia allows optimization based on type, and the internal storage type of the model response (currently a view into a matrix storing the concatenated fixed-effects model matrix and the response) may not match the type of a pre-allocated or new vector. See also discussion here.
All the methods that take new data as a table construct an additional MixedModel
behind the scenes, even when the new data is exactly the same as the data that the model was fitted to. For the simulation methods in particular, these thus form a convenience wrapper for constructing a new model and calling simulate
without new data on that model with the parameters from the original model.