MixedModels.jl Documentation
MixedModels.jl
is a Julia package providing capabilities for fitting and examining linear and generalized linear mixed-effect models. It is similar in scope to the lme4
package for R
.
Quick Start
You can fit a model using a lmer
-style model formula using @formula
and a dataset. Here is a short example of how to fit a linear mixed-effects modeling using the dyestuff
dataset:
using DataFrames, MixedModels # load packages
dyestuff = MixedModels.dataset(:dyestuff); # load dataset
lmod = lmm(@formula(yield ~ 1 + (1|batch)), dyestuff) # fit the model!
Linear mixed model fit by maximum likelihood
yield ~ 1 + (1 | batch)
logLik -2 logLik AIC AICc BIC
-163.6635 327.3271 333.3271 334.2501 337.5307
Variance components:
Column Variance Std.Dev.
batch (Intercept) 1388.3332 37.2603
Residual 2451.2501 49.5101
Number of obs: 30; levels of grouping factors: 6
Fixed-effects parameters:
────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
────────────────────────────────────────────────
(Intercept) 1527.5 17.6946 86.33 <1e-99
────────────────────────────────────────────────
For a generalized linear mixed-effect model, you have to specify a distribution for the response variable (and optionally a link function). A quick example of generalized linear model using the verbagg
dataset:
using DataFrames, MixedModels # load packages
verbagg = MixedModels.dataset(:verbagg); # load dataset
frm = @formula(r2 ~ 1 + anger + gender + btype + situ + mode + (1|subj) + (1|item));
bernmod = glmm(frm, verbagg, Bernoulli()) # fit the model!
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 1)
r2 ~ 1 + anger + gender + btype + situ + mode + (1 | subj) + (1 | item)
Distribution: Bernoulli{Float64}
Link: LogitLink()
logLik deviance AIC AICc BIC
-4067.9164 8135.8329 8153.8329 8153.8566 8216.2370
Variance components:
Column Variance Std.Dev.
subj (Intercept) 1.793543 1.339232
item (Intercept) 0.117147 0.342267
Number of obs: 7584; levels of grouping factors: 316, 24
Fixed-effects parameters:
──────────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
──────────────────────────────────────────────────────
(Intercept) -0.152626 0.385225 -0.40 0.6920
anger 0.0573837 0.016753 3.43 0.0006
gender: M 0.320634 0.19121 1.68 0.0936
btype: scold -1.05993 0.184157 -5.76 <1e-08
btype: shout -2.10392 0.186516 -11.28 <1e-28
situ: self -1.05436 0.151193 -6.97 <1e-11
mode: want 0.706979 0.151006 4.68 <1e-05
──────────────────────────────────────────────────────