Public Documentation
Documentation for MixedModels.jl
's public interface.
MixedModels
#
MixedModels.GeneralizedLinearMixedModel
— Type.
GeneralizedLinearMixedModel
Generalized linear mixed-effects model representation
Members:
LMM
: aLinearMixedModel
- used for the random effects only.dist
: aUnivariateDistribution
- typicallyBernoulli()
,Binomial()
,Gamma()
orPoisson()
.link
: a suitableGLM.Link
objectβ
: the fixed-effects vectorθ
: covariance parameter vectorb
: similar tou
, equivalent tobroadcast!(*, b, LMM.Λ, u)
u
: a vector of matrices of random effectsu₀
: similar tou
. Used in the PIRLS algorithm if step-halving is necessary.X
:y
: the response vectorμ
: the mean vectorη
: the linear predictordevresid
: vector of squared deviance residualsoffset
: offset₀ +X * β
offset₀
: prior offset;T[]
is allowedwrkresid
: vector of working residualswrkwt
: vector of working weightswt
: vector of prior case weights, a value ofT[]
indicates equal weights.
#
MixedModels.LinearMixedModel
— Type.
LinearMixedModel
Linear mixed-effects model representation
Members
formula
: the formula for the modelmf
: the model frame, mostly used to get theterms
component for labelling fixed effectswttrms
: a lengthnt
vector of weighted model matrices. The last two elements areX
andy
.trms
: a vector of unweighted model matrices. Ifisempty(sqrtwts)
the same object aswttrms
Λ
: a lengthnt - 2
vector of lower triangular matricessqrtwts
: theDiagonal
matrix of the square roots of the case weights. Allowed to be size 0A
: annt × nt
symmetric matrix of matrices representinghcat(Z,X,y)'hcat(Z,X,y)
R
: ant × nt
matrix of matrices - the upper Cholesky factor ofΛ'AΛ+I
opt
: anOptSummary
object
#
MixedModels.OptSummary
— Type.
OptSummary
Summary of an NLopt
optimization
Members
initial
: a copy of the initial parameter values in the optimizationfinal
: a copy of the final parameter values from the optimizationfmin
: the final value of the objectivefeval
: the number of function evaluationsoptimizer
: the name of the optimizer used, as aSymbol
#
MixedModels.ReMat
— Type.
ReMat
A representation of the model matrix for a random-effects term
#
MixedModels.ScalarReMat
— Type.
ScalarReMat
The representation of the model matrix for a scalar random-effects term
Members
f
: the grouping factor as aPooledDataVector
z
: the raw random-effects model matrix as aVector
fnm
: the name of the grouping factor as aSymbol
cnms
: aVector
of column names
#
MixedModels.VarCorr
— Type.
VarCorr
An encapsulation of information on the fitted random-effects variance-covariance matrices.
Members
Λ
: the vector of lower triangular matrices from theMixedModel
fnms
: aVector{ASCIIString}
of grouping factor namescnms
: aVector{Vector{ASCIIString}}
of column namess
: the estimate of σ, the standard deviation of the per-observation noise
The main purpose of defining this type is to isolate the logic in the show method.
#
MixedModels.VectorReMat
— Type.
VectorReMat
The representation of the model matrix for a vector-valued random-effects term
Members
f
: the grouping factor as aPooledDataVector
z
: the transposed raw random-effects model matrixfnm
: the name of the grouping factor as aSymbol
cnms
: aVector
of column names (row names after transposition) ofz
#
Base.LinAlg.cond
— Method.
cond(m::MixedModel)
Returns the vector of the condition numbers of the blocks of m.Λ
#
Base.std
— Method.
std{T}(m::MixedModel{T})
The estimated standard deviations of the variance components as a Vector{Vector{T}}
.
#
MixedModels.LaplaceDeviance
— Method.
LaplaceDeviance{T,D}(m::GeneralizedLinearMixedModel{T,D})
Return the Laplace approximation to the deviance of m
.
If the distribution D
does not have a scale parameter the Laplace approximation is defined as the squared length of the conditional modes, u
, plus the determinant of Λ'Z'ZΛ + 1
, plus the sum of the squared deviance residuals.
#
MixedModels.bootstrap!
— Method.
bootstrap!{T}(r::Matrix{T}, m::LinearMixedModel{T}, f!::Function; β=fixef(m), σ=sdest(m), θ=getθ(m))
Overwrite columns of r
with the results of applying the mutating extractor f!
to parametric bootstrap replications of model m
.
The signature of f!
should be f!{T}(v::AbstractVector{T}, m::LinearMixedModel{T})
Named Arguments
β::Vector{T}
, σ::T
, and θ::Vector{T}
are the values of the parameters in m
for simulation of the responses.
#
MixedModels.cfactor!
— Method.
cfactor!(A::AbstractMatrix)
A slightly modified version of chol!
from Base
Uses inject!
(as opposed to copy!
), downdate!
(as opposed to syrk!
or gemm!
) and recursive calls to cfactor!
.
Note: The cfactor!
method for dense matrices calls LAPACK.potrf!
directly to avoid errors being thrown when A
is computationally singular
#
MixedModels.fixef
— Method.
fixef(m::MixedModel)
Returns the fixed-effects parameter vector estimate.
#
MixedModels.getθ
— Method.
getθ(A::LowerTriangular{T, Matrix{T}})
Return a vector of the elements of the lower triangle of A
(column-major ordering)
#
MixedModels.glmm
— Method.
glmm(f::Formula, fr::ModelFrame, d::Distribution[, l::GLM.Link])
Return a GeneralizedLinearMixedModel
object.
The value is ready to be fit!
but has not yet been fit.
#
MixedModels.lmm
— Method.
lmm(f::DataFrames.Formula, fr::DataFrames.DataFrame; weights = [])
Create a LinearMixedModel
from f
, which contains both fixed-effects terms and random effects, and fr
.
The return value is ready to be fit!
but has not yet been fit.
#
MixedModels.lmm
— Method.
lmm(m::MixedModel)
Extract the LinearMixedModel
from a MixedModel
.
If m
is a LinearMixedModel
return m
. If m
is a GeneralizedLinearMixedModel
return m.LMM
.
#
MixedModels.lowerbd
— Method.
lowerbd{T}(A::LowerTriangular{T,Matrix{T}})
Return the vector of lower bounds on the parameters, θ
.
These are the elements in the lower triangle in column-major ordering. Diagonals have a lower bound of 0
. Off-diagonals have a lower-bound of -Inf
.
#
MixedModels.lowerbd
— Method.
lowerbd(m::LinearMixedModel)
Return the vector of lower bounds on the covariance parameter vector θ
#
MixedModels.objective
— Method.
objective(m::LinearMixedModel)
Return negative twice the log-likelihood of model m
#
MixedModels.pirls!
— Method.
pirls!(m::GeneralizedLinearMixedModel)
Use Penalized Iteratively Reweighted Least Squares (PIRLS) to determine the conditional modes of the random effects.
#
MixedModels.pwrss
— Method.
pwrss(m::LinearMixedModel)
The penalized residual sum-of-squares.
#
MixedModels.ranef
— Function.
ranef{T}(m::MixedModel{T}, uscale=false)
Returns, as a Vector{Matrix{T}}
, the conditional modes of the random effects in model m
.
If uscale
is true
the random effects are on the spherical (i.e. u
) scale, otherwise on the original scale.
#
MixedModels.refit!
— Method.
refit!{T}(m::LinearMixedModel{T}[, y::Vector{T}])
Refit the model m
after installing response y
.
If y
is omitted the current response vector is used.
#
MixedModels.remat
— Method.
remat(e::Expr, df::DataFrames.DataFrame)
A factory for ReMat
objects.
e
should be of the form :(e1 | e2)
where e1
is a valid rhs of a Formula
and pool(e2)
can be evaluated within df
. The result is a ScalarReMat
or a VectorReMat
, as appropriate.
#
MixedModels.sdest
— Method.
sdest(m::LinearMixedModel)
Return the estimate of σ, the standard deviation of the per-observation noise.
#
MixedModels.setθ!
— Method.
setθ!{T}(m::LinearMixedModel{T}, v::Vector{T})
Install v
as the θ parameters in m
. Changes m.Λ
only.
#
MixedModels.simulate!
— Method.
simulate!(m::LinearMixedModel; β=fixef(m), σ=sdest(m), θ=getΘ(m))
Overwrite the response (i.e. m.trms[end]
) with a simulated response vector from model m
.
#
MixedModels.varest
— Method.
varest(m::LinearMixedModel)
Returns the estimate of σ², the variance of the conditional distribution of Y given B.
#
StatsBase.fit!
— Function.
fit!(m::LinearMixedModel[, verbose::Bool=false[, optimizer::Symbol=:LN_BOBYQA]])
Optimize the objective of a LinearMixedModel
.
A value for optimizer
should be the name of an NLopt
derivative-free optimizer allowing for box constraints.
#
StatsBase.fit!
— Function.
fit!(m::GeneralizedLinearMixedModel[, verbose = false, optimizer=:LN_BOBYQA]])
Optimize the objective function for m
#
StatsBase.vcov
— Method.
vcov(m::MixedModel)
Returns the estimated covariance matrix of the fixed-effects estimator.