Model constructors

Model constructors

The LinearMixedModel type represents a linear mixed-effects model. Typically it is constructed from a Formula and an appropriate data type, usually a DataFrame.

LinearMixedModel

Linear mixed-effects model representation

Fields

  • formula: the formula for the model
  • reterms: a Vector{ReMat{T}} of random-effects terms.
  • feterms: a Vector{FeMat{T}} of the fixed-effects model matrix and the response
  • sqrtwts: vector of square roots of the case weights. Can be empty.
  • A: an nt × nt symmetric BlockMatrix of matrices representing hcat(Z,X,y)'hcat(Z,X,y)
  • L: a nt × nt BlockMatrix - the lower Cholesky factor of Λ'AΛ+I
  • optsum: an OptSummary object

Properties

  • θ or theta: the covariance parameter vector used to form λ
  • β or beta: the fixed-effects coefficient vector
  • λ or lambda: a vector of lower triangular matrices repeated on the diagonal blocks of Λ
  • σ or sigma: current value of the standard deviation of the per-observation noise
  • b: random effects on the original scale, as a vector of matrices
  • u: random effects on the orthogonal scale, as a vector of matrices
  • lowerbd: lower bounds on the elements of θ
  • X: the fixed-effects model matrix
  • y: the response vector
source

Examples of linear mixed-effects model fits

For illustration, several data sets from the lme4 package for R are made available in .rda format in this package. These include the Dyestuff and Dyestuff2 data sets.

julia> using DataFrames, MixedModels, RData, StatsBase

julia> const dat = Dict(Symbol(k)=>v for (k,v) in 
    load(joinpath(dirname(pathof(MixedModels)), "..", "test", "dat.rda")));

julia> describe(dat[:Dyestuff])
2×8 DataFrames.DataFrame. Omitted printing of 1 columns
│ Row │ variable │ mean   │ min    │ median │ max    │ nunique │ nmissing │
│     │ Symbol   │ Union… │ Any    │ Union… │ Any    │ Union…  │ Nothing  │
├─────┼──────────┼────────┼────────┼────────┼────────┼─────────┼──────────┤
│ 1   │ G        │        │ A      │        │ F      │ 6       │          │
│ 2   │ Y        │ 1527.5 │ 1440.0 │ 1530.0 │ 1635.0 │         │          │

The columns in these data sets have been renamed for convenience. The response is always named Y. Potential grouping factors for random-effects terms are named G, H, etc. Numeric covariates are named starting with U. Categorical covariates not suitable as grouping factors are named starting with A.

Models with simple, scalar random effects

The formula language in Julia is similar to that in R except that the formula must be enclosed in a call to the @formula macro. A basic model with simple, scalar random effects for the levels of G (the batch of an intermediate product, in this case) is declared and fit as

julia> fm1 = fit!(LinearMixedModel(@formula(Y ~ 1 + (1|G)), dat[:Dyestuff]))
Linear mixed model fit by maximum likelihood
 Y ~ 1 + (1 | G)
   logLik   -2 logLik     AIC        BIC    
 -163.66353  327.32706  333.32706  337.53065

Variance components:
              Column    Variance  Std.Dev. 
 G        (Intercept)  1388.3333 37.260345
 Residual              2451.2500 49.510100
 Number of obs: 30; levels of grouping factors: 6

  Fixed-effects parameters:
──────────────────────────────────────────────────
             Estimate  Std.Error  z value  P(>|z|)
──────────────────────────────────────────────────
(Intercept)    1527.5    17.6946   86.326   <1e-99
──────────────────────────────────────────────────

(If you are new to Julia you may find that this first fit takes an unexpectedly long time, due to Just-In-Time (JIT) compilation of the code. The second and subsequent calls to such functions are much faster.)

julia> @time fit!(LinearMixedModel(@formula(Y ~ 1 + (1|G)), dat[:Dyestuff2]));
  0.495632 seconds (861.17 k allocations: 45.431 MiB, 3.88% gc time)

By default, the model fit is by maximum likelihood. To use the REML criterion instead, add the optional named argument REML = true to the call to fit!

julia> fm1R = fit!(LinearMixedModel(@formula(Y ~ 1 + (1|G)), dat[:Dyestuff]), REML=true)
Linear mixed model fit by REML
 Y ~ 1 + (1 | G)
 REML criterion at convergence: 319.6542768422538

Variance components:
              Column    Variance  Std.Dev. 
 G        (Intercept)  1764.0506 42.000602
 Residual              2451.2499 49.510099
 Number of obs: 30; levels of grouping factors: 6

  Fixed-effects parameters:
──────────────────────────────────────────────────
             Estimate  Std.Error  z value  P(>|z|)
──────────────────────────────────────────────────
(Intercept)    1527.5    19.3834  78.8045   <1e-99
──────────────────────────────────────────────────

Simple, scalar random effects

A simple, scalar random effects term in a mixed-effects model formula is of the form (1|G). All random effects terms end with |G where G is the grouping factor for the random effect. The name or, more generally, the expression G should evaluate to a categorical array that has a distinct set of levels. The random effects are associated with the levels of the grouping factor.

A scalar random effect is, as the name implies, one scalar value for each level of the grouping factor. A simple, scalar random effects term is of the form, (1|G). It corresponds to a shift in the intercept for each level of the grouping factor.

Models with vector-valued random effects

The sleepstudy data are observations of reaction time, Y, on several subjects, G, after 0 to 9 days of sleep deprivation, U. A model with random intercepts and random slopes for each subject, allowing for within-subject correlation of the slope and intercept, is fit as

julia> fm2 = fit!(LinearMixedModel(@formula(Y ~ 1 + U + (1+U|G)), dat[:sleepstudy]))
Linear mixed model fit by maximum likelihood
 Y ~ 1 + U + (1 + U | G)
   logLik   -2 logLik     AIC        BIC    
 -875.96967 1751.93934 1763.93934 1783.09709

Variance components:
              Column    Variance  Std.Dev.   Corr.
 G        (Intercept)  565.51069 23.780469
          U             32.68212  5.716828  0.08
 Residual              654.94145 25.591824
 Number of obs: 180; levels of grouping factors: 18

  Fixed-effects parameters:
───────────────────────────────────────────────────
             Estimate  Std.Error   z value  P(>|z|)
───────────────────────────────────────────────────
(Intercept)  251.405     6.63226  37.9064    <1e-99
U             10.4673    1.50224   6.96781   <1e-11
───────────────────────────────────────────────────

A model with uncorrelated random effects for the intercept and slope by subject is fit as

julia> # This model is not currently (v"2.0.0") available
#fm3 = fit(LinearMixedModel, @formula(Y ~ 1 + U + (1|G) + (0+U|G)), dat[:sleepstudy])

Although technically there are two random-effects terms in the formula for fm3 both have the same grouping factor and, internally, are amalgamated into a single vector-valued term.

Models with multiple, scalar random-effects terms

A model for the Penicillin data incorporates random effects for the plate, G, and for the sample, H. As every sample is used on every plate these two factors are crossed.

julia> fm4 = fit!(LinearMixedModel(@formula(Y ~ 1 + (1|G) + (1|H)), dat[:Penicillin]))
Linear mixed model fit by maximum likelihood
 Y ~ 1 + (1 | G) + (1 | H)
   logLik   -2 logLik     AIC        BIC    
 -166.09417  332.18835  340.18835  352.06760

Variance components:
              Column    Variance   Std.Dev. 
 G        (Intercept)  0.71497949 0.8455646
 H        (Intercept)  3.13519360 1.7706478
 Residual              0.30242640 0.5499331
 Number of obs: 144; levels of grouping factors: 24, 6

  Fixed-effects parameters:
──────────────────────────────────────────────────
             Estimate  Std.Error  z value  P(>|z|)
──────────────────────────────────────────────────
(Intercept)   22.9722   0.744596  30.8519   <1e-99
──────────────────────────────────────────────────

In contrast the sample, G, grouping factor is nested within the batch, H, grouping factor in the Pastes data. That is, each level of G occurs in conjunction with only one level of H.

julia> fm5 = fit!(LinearMixedModel(@formula(Y ~ 1 + (1|G) + (1|H)), dat[:Pastes]))
Linear mixed model fit by maximum likelihood
 Y ~ 1 + (1 | G) + (1 | H)
   logLik   -2 logLik     AIC        BIC    
 -123.99723  247.99447  255.99447  264.37184

Variance components:
              Column    Variance   Std.Dev.  
 G        (Intercept)  8.43361634 2.90406893
 H        (Intercept)  1.19918042 1.09507097
 Residual              0.67800208 0.82340882
 Number of obs: 60; levels of grouping factors: 30, 10

  Fixed-effects parameters:
──────────────────────────────────────────────────
             Estimate  Std.Error  z value  P(>|z|)
──────────────────────────────────────────────────
(Intercept)   60.0533   0.642136  93.5212   <1e-99
──────────────────────────────────────────────────

In observational studies it is common to encounter partially crossed grouping factors. For example, the InstEval data are course evaluations by students, G, of instructors, H. Additional covariates include the academic department, I, in which the course was given and A, whether or not it was a service course.

julia> fm6 = fit!(LinearMixedModel(@formula(Y ~ 1 + A * I + (1|G) + (1|H)), dat[:InstEval]))
Linear mixed model fit by maximum likelihood
 Y ~ 1 + A + I + A & I + (1 | G) + (1 | H)
     logLik        -2 logLik          AIC             BIC       
 -1.18792777×10⁵  2.37585553×10⁵  2.37647553×10⁵  2.37932876×10⁵

Variance components:
              Column    Variance   Std.Dev.  
 G        (Intercept)  0.10541798 0.32468136
 H        (Intercept)  0.25841636 0.50834669
 Residual              1.38472777 1.17674456
 Number of obs: 73421; levels of grouping factors: 2972, 1128

  Fixed-effects parameters:
────────────────────────────────────────────────────────
                Estimate  Std.Error     z value  P(>|z|)
────────────────────────────────────────────────────────
(Intercept)    3.22961    0.064053   50.4209      <1e-99
A: 1           0.252025   0.0686507   3.67112     0.0002
I: 5           0.129536   0.101294    1.27882     0.2010
I: 10         -0.176751   0.0881352  -2.00545     0.0449
I: 12          0.0517102  0.0817523   0.632522    0.5270
I: 6           0.0347319  0.085621    0.405647    0.6850
I: 7           0.14594    0.0997984   1.46235     0.1436
I: 4           0.151689   0.0816897   1.85689     0.0633
I: 8           0.104206   0.118751    0.877517    0.3802
I: 9           0.0440401  0.0962985   0.457329    0.6474
I: 14          0.0517546  0.0986029   0.524879    0.5997
I: 1           0.0466719  0.101942    0.457828    0.6471
I: 3           0.0563461  0.0977925   0.57618     0.5645
I: 11          0.0596536  0.100233    0.59515     0.5517
I: 2           0.0055628  0.110867    0.0501756   0.9600
A: 1 & I: 5   -0.180757   0.123179   -1.46744     0.1423
A: 1 & I: 10   0.0186492  0.110017    0.169513    0.8654
A: 1 & I: 12  -0.282269   0.0792937  -3.55979     0.0004
A: 1 & I: 6   -0.494464   0.0790278  -6.25683     <1e-9 
A: 1 & I: 7   -0.392054   0.110313   -3.55403     0.0004
A: 1 & I: 4   -0.278547   0.0823727  -3.38154     0.0007
A: 1 & I: 8   -0.189526   0.111449   -1.70056     0.0890
A: 1 & I: 9   -0.499868   0.0885423  -5.64553     <1e-7 
A: 1 & I: 14  -0.497162   0.0917162  -5.42065     <1e-7 
A: 1 & I: 1   -0.24042    0.0982071  -2.4481      0.0144
A: 1 & I: 3   -0.223013   0.0890548  -2.50422     0.0123
A: 1 & I: 11  -0.516997   0.0809077  -6.38997     <1e-9 
A: 1 & I: 2   -0.384773   0.091843   -4.18946     <1e-4 
────────────────────────────────────────────────────────

Fitting generalized linear mixed models

To create a GLMM representation

GeneralizedLinearMixedModel

Generalized linear mixed-effects model representation

Fields

  • LMM: a LinearMixedModel - the local approximation to the GLMM.
  • β: the pivoted and possibly truncated fixed-effects vector
  • β₀: similar to β. Used in the PIRLS algorithm if step-halving is needed.
  • θ: covariance parameter vector
  • b: similar to u, equivalent to broadcast!(*, b, LMM.Λ, u)
  • u: a vector of matrices of random effects
  • u₀: similar to u. Used in the PIRLS algorithm if step-halving is needed.
  • resp: a GlmResp object
  • η: the linear predictor
  • wt: vector of prior case weights, a value of T[] indicates equal weights.

The following fields are used in adaptive Gauss-Hermite quadrature, which applies only to models with a single random-effects term, in which case their lengths are the number of levels in the grouping factor for that term. Otherwise they are zero-length vectors.

  • devc: vector of deviance components
  • devc0: vector of deviance components at offset of zero
  • sd: approximate standard deviation of the conditional density
  • mult: multiplier

Properties

In addition to the fieldnames, the following names are also accessible through the . extractor

  • theta: synonym for θ
  • beta: synonym for β
  • σ or sigma: common scale parameter (value is NaN for distributions without a scale parameter)
  • lowerbd: vector of lower bounds on the combined elements of β and θ
  • formula, trms, A, L, and optsum: fields of the LMM field
  • X: fixed-effects model matrix
  • y: response vector
source

the distribution family for the response, and possibly the link function, must be specified.

julia> verbaggform = @formula(r2 ~ 1 + a + g + b + s + m + (1|id) + (1|item));

julia> gm1 = fit!(GeneralizedLinearMixedModel(verbaggform, dat[:VerbAgg], Bernoulli()))
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 1)
  r2 ~ 1 + a + g + b + s + m + (1 | id) + (1 | item)
  Distribution: Distributions.Bernoulli{Float64}
  Link: GLM.LogitLink()

  Deviance: 8135.8329

Variance components:
          Column   Variance  Std.Dev.  
 id   (Intercept)  1.793473 1.33920611
 item (Intercept)  0.117149 0.34227036
 Number of obs: 7584; levels of grouping factors: 316, 24

Fixed-effects parameters:
─────────────────────────────────────────────────────
              Estimate  Std.Error    z value  P(>|z|)
─────────────────────────────────────────────────────
(Intercept)   0.553512  0.368905     1.50042   0.1335
a             0.05742   0.0160373    3.58041   0.0003
g: M          0.320766  0.183041     1.75243   0.0797
b: scold     -1.05987   0.176294    -6.01194   <1e-8 
b: shout     -2.10387   0.178552   -11.783     <1e-31
s: self      -1.05433   0.144737    -7.28446   <1e-12
m: do        -0.707051  0.144558    -4.89112   <1e-5 
─────────────────────────────────────────────────────

The canonical link, which is GLM.LogitLink for the Bernoulli distribution, is used if no explicit link is specified.

Note that, in keeping with convention in the GLM package, the distribution family for a binary (i.e. 0/1) response is the Bernoulli distribution. The Binomial distribution is only used when the response is the fraction of trials returning a positive, in which case the number of trials must be specified as the case weights.

Optional arguments to fit!

An alternative approach is to create the GeneralizedLinearMixedModel object then call fit! on it. In this form optional arguments fast and/or nAGQ can be passed to the optimization process.

As the name implies, fast=true, provides a faster but somewhat less accurate fit. These fits may suffice for model comparisons.

julia> gm1a = fit!(GeneralizedLinearMixedModel(verbaggform, dat[:VerbAgg], Bernoulli()), fast=true)
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 1)
  r2 ~ 1 + a + g + b + s + m + (1 | id) + (1 | item)
  Distribution: Distributions.Bernoulli{Float64}
  Link: GLM.LogitLink()

  Deviance: 8136.1709

Variance components:
          Column    Variance   Std.Dev.  
 id   (Intercept)  1.79270002 1.33891748
 item (Intercept)  0.11875573 0.34460953
 Number of obs: 7584; levels of grouping factors: 316, 24

Fixed-effects parameters:
──────────────────────────────────────────────────────
               Estimate  Std.Error    z value  P(>|z|)
──────────────────────────────────────────────────────
(Intercept)   0.548543   0.368446     1.4888    0.1365
a             0.0543802  0.0159982    3.39915   0.0007
g: M          0.304244   0.182603     1.66614   0.0957
b: scold     -1.01749    0.176943    -5.75038   <1e-8 
b: shout     -2.02067    0.179146   -11.2795    <1e-28
s: self      -1.01255    0.145248    -6.97114   <1e-11
m: do        -0.679102   0.145074    -4.68108   <1e-5 
──────────────────────────────────────────────────────

julia> deviance(gm1a) - deviance(gm1)
0.33801565450448834

julia> @time fit!(GeneralizedLinearMixedModel(verbaggform, dat[:VerbAgg], Bernoulli()));
  4.781567 seconds (14.91 M allocations: 124.566 MiB, 0.58% gc time)

julia> @time fit!(GeneralizedLinearMixedModel(verbaggform, dat[:VerbAgg], Bernoulli()), fast=true);
  0.962336 seconds (2.38 M allocations: 25.948 MiB, 0.81% gc time)

The optional argument nAGQ=k causes evaluation of the deviance function to use a k point adaptive Gauss-Hermite quadrature rule. This method only applies to models with a single, simple, scalar random-effects term, such as

julia> contraform = @formula(use ~ 1 + a + l + urb + (1|d))
FormulaTerm
Response:
  use(unknown)
Predictors:
  1
  a(unknown)
  l(unknown)
  urb(unknown)
  (d)->1 | d

julia> @time gm2 = fit!(GeneralizedLinearMixedModel(contraform, dat[:Contraception], Bernoulli()), nAGQ=9)
  2.879808 seconds (6.98 M allocations: 221.512 MiB, 4.36% gc time)
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 9)
  use ~ 1 + a + l + urb + (1 | d)
  Distribution: Distributions.Bernoulli{Float64}
  Link: GLM.LogitLink()

  Deviance: 2413.3485

Variance components:
       Column    Variance   Std.Dev.  
 d (Intercept)  0.21549756 0.46421714
 Number of obs: 1934; levels of grouping factors: 60

Fixed-effects parameters:
───────────────────────────────────────────────────────
               Estimate   Std.Error    z value  P(>|z|)
───────────────────────────────────────────────────────
(Intercept)  -1.69016    0.143664    -11.7647    <1e-31
a            -0.0266002  0.00771936   -3.44591   0.0006
l: 1          1.10933    0.154651      7.17312   <1e-12
l: 2          1.37653    0.17091       8.05412   <1e-15
l: 3+         1.34561    0.175315      7.67538   <1e-13
urb: Y        0.732416   0.11682       6.26963   <1e-9 
───────────────────────────────────────────────────────

julia> @time deviance(fit!(GeneralizedLinearMixedModel(contraform, dat[:Contraception], Bernoulli()), nAGQ=9, fast=true))
  0.092720 seconds (422.42 k allocations: 4.890 MiB)
2413.6637188688373

julia> @time deviance(fit!(GeneralizedLinearMixedModel(contraform, dat[:Contraception], Bernoulli())))
  0.252670 seconds (1.03 M allocations: 9.565 MiB, 4.46% gc time)
2413.615689739634

julia> @time deviance(fit!(GeneralizedLinearMixedModel(contraform, dat[:Contraception], Bernoulli()), fast=true))
  0.057091 seconds (246.10 k allocations: 3.077 MiB)
2413.6618664984017

Extractor functions

LinearMixedModel and GeneralizedLinearMixedModel are subtypes of StatsBase.RegressionModel which, in turn, is a subtype of StatsBase.StatisticalModel. Many of the generic extractors defined in the StatsBase package have methods for these models.

Model-fit statistics

The statistics describing the quality of the model fit include

loglikelihood(obj::StatisticalModel)

Return the log-likelihood of the model.

StatsBase.aicFunction.
aic(obj::StatisticalModel)

Akaike's Information Criterion, defined as $-2 \log L + 2k$, with $L$ the likelihood of the model, and k its number of consumed degrees of freedom (as returned by dof).

StatsBase.bicFunction.
bic(obj::StatisticalModel)

Bayesian Information Criterion, defined as $-2 \log L + k \log n$, with $L$ the likelihood of the model, $k$ its number of consumed degrees of freedom (as returned by dof), and $n$ the number of observations (as returned by nobs).

StatsBase.dofMethod.
dof(obj::StatisticalModel)

Return the number of degrees of freedom consumed in the model, including when applicable the intercept and the distribution's dispersion parameter.

StatsBase.nobsMethod.
nobs(obj::StatisticalModel)

Return the number of independent observations on which the model was fitted. Be careful when using this information, as the definition of an independent observation may vary depending on the model, on the format used to pass the data, on the sampling plan (if specified), etc.

julia> loglikelihood(fm1)
-163.66352994057004

julia> aic(fm1)
333.3270598811401

julia> bic(fm1)
337.5306520261266

julia> dof(fm1)   # 1 fixed effect, 2 variances
3

julia> nobs(fm1)  # 30 observations
30

julia> loglikelihood(gm1)
-4067.9164280257423

In general the deviance of a statistical model fit is negative twice the log-likelihood adjusting for the saturated model.

StatsBase.devianceMethod.
deviance(obj::StatisticalModel)

Return the deviance of the model relative to a reference, which is usually when applicable the saturated model. It is equal, up to a constant, to $-2 \log L$, with $L$ the likelihood of the model.

Because it is not clear what the saturated model corresponding to a particular LinearMixedModel should be, negative twice the log-likelihood is called the objective.

MixedModels.objectiveFunction.
objective(m::LinearMixedModel)

Return negative twice the log-likelihood of model m

source

This value is also accessible as the deviance but the user should bear in mind that this doesn't have all the properties of a deviance which is corrected for the saturated model. For example, it is not necessarily non-negative.

julia> objective(fm1)
327.3270598811401

julia> deviance(fm1)
327.3270598811401

The value optimized when fitting a GeneralizedLinearMixedModel is the Laplace approximation to the deviance or an adaptive Gauss-Hermite evaluation.

deviance!
julia> MixedModels.deviance!(gm1)
8135.832856051482

Fixed-effects parameter estimates

The coef and fixef extractors both return the maximum likelihood estimates of the fixed-effects coefficients.

StatsBase.coefFunction.
coef(obj::StatisticalModel)

Return the coefficients of the model.

MixedModels.fixefFunction.
fixef(m::MixedModel, permuted=true)

Return the fixed-effects parameter vector estimate of m.

If permuted is true the vector elements are permuted according to m.trms[end - 1].piv and truncated to the rank of that term.

source
julia> show(coef(fm1))
[1527.4999999999993]
julia> show(fixef(fm1))
[1527.4999999999993]
julia> show(fixef(gm1))
[0.5535116086379206, 0.05742001139348312, 0.32076602931752635, -1.059867665970283, -2.103869984409917, -1.0543329105826895, -0.7070511487154889]

An alternative extractor for the fixed-effects coefficient is the β property. Properties whose names are Greek letters usually have an alternative spelling, which is the name of the Greek letter.

julia> show(fm1.β)
[1527.4999999999993]
julia> show(fm1.beta)
[1527.4999999999993]
julia> show(gm1.β)
[0.5535116086379206, 0.05742001139348312, 0.32076602931752635, -1.059867665970283, -2.103869984409917, -1.0543329105826895, -0.7070511487154889]

The variance-covariance matrix of the fixed-effects coefficients is returned by

StatsBase.vcovFunction.
vcov(obj::StatisticalModel)

Return the variance-covariance matrix for the coefficients of the model.

julia> vcov(fm2)
2×2 Array{Float64,2}:
 43.9868   -1.37039
 -1.37039   2.25671

julia> vcov(gm1)
7×7 Array{Float64,2}:
  0.136091    -0.00513612   -0.00895404   …  -0.0104975    -0.0104986  
 -0.00513612   0.000257194   6.59009e-5      -1.35602e-5   -9.38556e-6 
 -0.00895404   6.59009e-5    0.0335039       -7.37176e-5   -4.81924e-5 
 -0.0155523   -1.31704e-5   -8.4825e-5        0.000243582   0.000157714
 -0.0157104   -2.6628e-5    -0.000148816      0.000603881   0.000477019
 -0.0104975   -1.35602e-5   -7.37176e-5   …   0.0209489     0.000227073
 -0.0104986   -9.38556e-6   -4.81924e-5       0.000227073   0.0208971  

The standard errors are the square roots of the diagonal elements of the estimated variance-covariance matrix of the fixed-effects coefficient estimators.

StatsBase.stderrorFunction.
stderror(obj::StatisticalModel)

Return the standard errors for the coefficients of the model.

julia> show(StatsBase.stderror(fm2))
[6.632257825314581, 1.502235453639816]
julia> show(StatsBase.stderror(gm1))
[0.36890512061819736, 0.01603727875112492, 0.1830407884432926, 0.1762937885165568, 0.17855176330630151, 0.1447372582156264, 0.14455818519253938]

Finally, the coeftable generic produces a table of coefficient estimates, their standard errors, and their ratio. The p-values quoted here should be regarded as approximations.

StatsBase.coeftableFunction.
coeftable(obj::StatisticalModel; level::Real=0.95)

Return a table of class CoefTable with coefficients and related statistics. level determines the level for confidence intervals (by default, 95%).

julia> coeftable(fm2)
───────────────────────────────────────────────────
             Estimate  Std.Error   z value  P(>|z|)
───────────────────────────────────────────────────
(Intercept)  251.405     6.63226  37.9064    <1e-99
U             10.4673    1.50224   6.96781   <1e-11
───────────────────────────────────────────────────

Covariance parameter estimates

The covariance parameters estimates, in the form shown in the model summary, are a VarCorr object

VarCorr

An encapsulation of information on the fitted random-effects variance-covariance matrices.

Members

  • σ: a Vector{Vector{T}} of unscaled standard deviations
  • ρ: a Vector{Matrix{T}} of correlation matrices
  • fnms: a Vector{Symbol} of grouping factor names
  • cnms: a Vector{Vector{String}} of column names
  • s: the estimate of σ, the standard deviation of the per-observation noise. When there is no scaling factor this value is NaN

The main purpose of defining this type is to isolate the logic in the show method.

source
julia> VarCorr(fm2)
Variance components:
              Column    Variance  Std.Dev.   Corr.
 G        (Intercept)  565.51069 23.780469
          U             32.68212  5.716828  0.08
 Residual              654.94145 25.591824


julia> VarCorr(gm1)
Variance components:
          Column   Variance  Std.Dev.  
 id   (Intercept)  1.793473 1.33920611
 item (Intercept)  0.117149 0.34227036

Individual components are returned by other extractors

MixedModels.varestFunction.
varest(m::LinearMixedModel)

Returns the estimate of σ², the variance of the conditional distribution of Y given B.

source
MixedModels.sdestFunction.
sdest(m::LinearMixedModel)

Return the estimate of σ, the standard deviation of the per-observation noise.

source
julia> varest(fm2)
654.9414513956141

julia> sdest(fm2)
25.59182391693906

julia> fm2.σ
25.59182391693906

Conditional modes of the random effects

The ranef extractor

MixedModels.ranefFunction.
ranef(m::LinearMixedModel; uscale=false) #, named=true)

Return, as a Vector{Vector{T}} (Vector{NamedVector{T}} if named=true), the conditional modes of the random effects in model m.

If uscale is true the random effects are on the spherical (i.e. u) scale, otherwise on the original scale.

source
julia> ranef(fm1)
1-element Array{Array{Float64,2},1}:
 [-16.62822143006434 0.36951603177972425 … 53.57982460798641 -42.49434365460919]

julia> fm1.b
1-element Array{Array{Float64,2},1}:
 [-16.62822143006434 0.36951603177972425 … 53.57982460798641 -42.49434365460919]

returns the conditional modes of the random effects given the observed data. That is, these are the values that maximize the conditional density of the random effects given the observed data. For a LinearMixedModel these are also the conditional mean values.

These are sometimes called the best linear unbiased predictors or BLUPs but that name is not particularly meaningful.

At a superficial level these can be considered as the "estimates" of the random effects, with a bit of hand waving, but pursuing this analogy too far usually results in confusion.

The corresponding conditional variances are returned by

MixedModels.condVarFunction.
condVar(m::LinearMixedModel)

Return the conditional variances matrices of the random effects.

The random effects are returned by ranef as a vector of length k, where k is the number of random effects terms. The ith element is a matrix of size vᵢ × ℓᵢ where vᵢ is the size of the vector-valued random effects for each of the ℓᵢ levels of the grouping factor. Technically those values are the modes of the conditional distribution of the random effects given the observed data.

This function returns an array of k three dimensional arrays, where the ith array is of size vᵢ × vᵢ × ℓᵢ. These are the diagonal blocks from the conditional variance-covariance matrix,

s² Λ(Λ'Z'ZΛ + I)⁻¹Λ'
source
julia> condVar(fm1)
1-element Array{Array{Float64,3},1}:
 [362.3104715146578]

[362.3104715146578]

[362.3104715146578]

[362.3104715146578]

[362.3104715146578]

[362.3104715146578]