Model constructors
The LinearMixedModel
type represents a linear mixed-effects model. Typically it is constructed from a Formula
and an appropriate data
type, usually a DataFrame
.
MixedModels.LinearMixedModel
— Type.LinearMixedModel
Linear mixed-effects model representation
Fields
formula
: the formula for the modelreterms
: aVector{ReMat{T}}
of random-effects terms.feterms
: aVector{FeMat{T}}
of the fixed-effects model matrix and the responsesqrtwts
: vector of square roots of the case weights. Can be empty.A
: annt × nt
symmetricBlockMatrix
of matrices representinghcat(Z,X,y)'hcat(Z,X,y)
L
: ant × nt
BlockMatrix
- the lower Cholesky factor ofΛ'AΛ+I
optsum
: anOptSummary
object
Properties
θ
ortheta
: the covariance parameter vector used to form λβ
orbeta
: the fixed-effects coefficient vectorλ
orlambda
: a vector of lower triangular matrices repeated on the diagonal blocks ofΛ
σ
orsigma
: current value of the standard deviation of the per-observation noiseb
: random effects on the original scale, as a vector of matricesu
: random effects on the orthogonal scale, as a vector of matriceslowerbd
: lower bounds on the elements of θX
: the fixed-effects model matrixy
: the response vector
Examples of linear mixed-effects model fits
For illustration, several data sets from the lme4 package for R are made available in .rda
format in this package. These include the Dyestuff
and Dyestuff2
data sets.
julia> using DataFrames, MixedModels, RData, StatsBase
julia> datf = joinpath(dirname(pathof(MixedModels)),"..","test","dat.rda")
"/home/travis/build/JuliaStats/MixedModels.jl/src/../test/dat.rda"
julia> const dat = Dict(Symbol(k)=>v for (k,v) in load(datf))
Dict{Symbol,DataFrames.DataFrame} with 62 entries:
:bs10 => 1104×6 DataFrames.DataFrame…
:Genetics => 60×5 DataFrames.DataFrame…
:Contraception => 1934×6 DataFrames.DataFrame. Omitted printing of 1 columns…
:Mmmec => 354×6 DataFrames.DataFrame…
:kb07 => 1790×10 DataFrames.DataFrame. Omitted printing of 4 columns…
:Rail => 18×2 DataFrames.DataFrame…
:KKL => 53765×24 DataFrames.DataFrame. Omitted printing of 18 colum…
:Bond => 21×3 DataFrames.DataFrame…
:VerbAgg => 7584×9 DataFrames.DataFrame. Omitted printing of 4 columns…
:ml1m => 1000209×3 DataFrames.DataFrame…
:ergoStool => 36×3 DataFrames.DataFrame…
:s3bbx => 2449×6 DataFrames.DataFrame. Omitted printing of 1 columns…
:cake => 270×5 DataFrames.DataFrame…
:Cultivation => 24×4 DataFrames.DataFrame…
:Pastes => 60×4 DataFrames.DataFrame…
:Exam => 4059×5 DataFrames.DataFrame…
:Socatt => 1056×9 DataFrames.DataFrame. Omitted printing of 5 columns…
:WWheat => 60×3 DataFrames.DataFrame…
:Pixel => 102×5 DataFrames.DataFrame…
⋮ => ⋮
julia> describe(dat[:Dyestuff])
2×8 DataFrames.DataFrame. Omitted printing of 1 columns
│ Row │ variable │ mean │ min │ median │ max │ nunique │ nmissing │
│ │ Symbol │ Union… │ Any │ Union… │ Any │ Union… │ Nothing │
├─────┼──────────┼────────┼────────┼────────┼────────┼─────────┼──────────┤
│ 1 │ G │ │ A │ │ F │ 6 │ │
│ 2 │ Y │ 1527.5 │ 1440.0 │ 1530.0 │ 1635.0 │ │ │
The columns in these data sets have been renamed for convenience. The response is always named Y
. Potential grouping factors for random-effects terms are named G
, H
, etc. Numeric covariates are named starting with U
. Categorical covariates not suitable as grouping factors are named starting with A
.
Models with simple, scalar random effects
The formula language in Julia is similar to that in R except that the formula must be enclosed in a call to the @formula
macro. A basic model with simple, scalar random effects for the levels of G
(the batch of an intermediate product, in this case) is declared and fit as
julia> fm1 = fit!(LinearMixedModel(@formula(Y ~ 1 + (1|G)),
dat[:Dyestuff]))
Linear mixed model fit by maximum likelihood
Y ~ 1 + (1 | G)
logLik -2 logLik AIC BIC
-163.66353 327.32706 333.32706 337.53065
Variance components:
Column Variance Std.Dev.
G (Intercept) 1388.3333 37.260345
Residual 2451.2500 49.510100
Number of obs: 30; levels of grouping factors: 6
Fixed-effects parameters:
──────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
──────────────────────────────────────────────────
(Intercept) 1527.5 17.6946 86.326 <1e-99
──────────────────────────────────────────────────
An alternative expression is
julia> fm1 = fit(MixedModel, @formula(Y ~ 1 + (1|G)), dat[:Dyestuff])
Linear mixed model fit by maximum likelihood
Y ~ 1 + (1 | G)
logLik -2 logLik AIC BIC
-163.66353 327.32706 333.32706 337.53065
Variance components:
Column Variance Std.Dev.
G (Intercept) 1388.3333 37.260345
Residual 2451.2500 49.510100
Number of obs: 30; levels of grouping factors: 6
Fixed-effects parameters:
──────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
──────────────────────────────────────────────────
(Intercept) 1527.5 17.6946 86.326 <1e-99
──────────────────────────────────────────────────
(If you are new to Julia you may find that this first fit takes an unexpectedly long time, due to Just-In-Time (JIT) compilation of the code. The second and subsequent calls to such functions are much faster.)
julia> @time fit(MixedModel, @formula(Y ~ 1 + (1|G)), dat[:Dyestuff2]);
0.715776 seconds (1.05 M allocations: 55.982 MiB, 3.47% gc time)
By default, the model fit is by maximum likelihood. To use the REML
criterion instead, add the optional named argument REML = true
to the call to fit!
julia> fm1R = fit(MixedModel, @formula(Y ~ 1 + (1|G)),
dat[:Dyestuff], REML=true)
Linear mixed model fit by REML
Y ~ 1 + (1 | G)
REML criterion at convergence: 319.6542768422538
Variance components:
Column Variance Std.Dev.
G (Intercept) 1764.0506 42.000602
Residual 2451.2499 49.510099
Number of obs: 30; levels of grouping factors: 6
Fixed-effects parameters:
──────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
──────────────────────────────────────────────────
(Intercept) 1527.5 19.3834 78.8045 <1e-99
──────────────────────────────────────────────────
Simple, scalar random effects
A simple, scalar random effects term in a mixed-effects model formula is of the form (1|G)
. All random effects terms end with |G
where G
is the grouping factor for the random effect. The name or, more generally, the expression G
should evaluate to a categorical array that has a distinct set of levels. The random effects are associated with the levels of the grouping factor.
A scalar random effect is, as the name implies, one scalar value for each level of the grouping factor. A simple, scalar random effects term is of the form, (1|G)
. It corresponds to a shift in the intercept for each level of the grouping factor.
Models with vector-valued random effects
The sleepstudy data are observations of reaction time, Y
, on several subjects, G
, after 0 to 9 days of sleep deprivation, U
. A model with random intercepts and random slopes for each subject, allowing for within-subject correlation of the slope and intercept, is fit as
julia> fm2 = fit(MixedModel, @formula(Y ~ 1+U + (1+U|G)), dat[:sleepstudy])
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + (1 + U | G)
logLik -2 logLik AIC BIC
-875.96967 1751.93934 1763.93934 1783.09709
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 565.51069 23.780469
U 32.68212 5.716828 0.08
Residual 654.94145 25.591824
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
───────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
───────────────────────────────────────────────────
(Intercept) 251.405 6.63226 37.9064 <1e-99
U 10.4673 1.50224 6.96781 <1e-11
───────────────────────────────────────────────────
Models with multiple, scalar random-effects terms
A model for the Penicillin data incorporates random effects for the plate, G
, and for the sample, H
. As every sample is used on every plate these two factors are crossed.
julia> fm4 = fit(MixedModel,@formula(Y ~ 1+(1|G)+(1|H)),dat[:Penicillin])
Linear mixed model fit by maximum likelihood
Y ~ 1 + (1 | G) + (1 | H)
logLik -2 logLik AIC BIC
-166.09417 332.18835 340.18835 352.06760
Variance components:
Column Variance Std.Dev.
G (Intercept) 0.71497949 0.8455646
H (Intercept) 3.13519360 1.7706478
Residual 0.30242640 0.5499331
Number of obs: 144; levels of grouping factors: 24, 6
Fixed-effects parameters:
──────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
──────────────────────────────────────────────────
(Intercept) 22.9722 0.744596 30.8519 <1e-99
──────────────────────────────────────────────────
In contrast the sample, G
, grouping factor is nested within the batch, H
, grouping factor in the Pastes data. That is, each level of G
occurs in conjunction with only one level of H
.
julia> fm5 = fit(MixedModel, @formula(Y ~ 1 + (1|G) + (1|H)), dat[:Pastes])
Linear mixed model fit by maximum likelihood
Y ~ 1 + (1 | G) + (1 | H)
logLik -2 logLik AIC BIC
-123.99723 247.99447 255.99447 264.37184
Variance components:
Column Variance Std.Dev.
G (Intercept) 8.43361634 2.90406893
H (Intercept) 1.19918042 1.09507097
Residual 0.67800208 0.82340882
Number of obs: 60; levels of grouping factors: 30, 10
Fixed-effects parameters:
──────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
──────────────────────────────────────────────────
(Intercept) 60.0533 0.642136 93.5212 <1e-99
──────────────────────────────────────────────────
In observational studies it is common to encounter partially crossed grouping factors. For example, the InstEval data are course evaluations by students, G
, of instructors, H
. Additional covariates include the academic department, I
, in which the course was given and A
, whether or not it was a service course.
julia> fm6 = fit(MixedModel,@formula(Y ~ 1+ A*I +(1|G)+(1|H)),dat[:InstEval])
Linear mixed model fit by maximum likelihood
Y ~ 1 + A + I + A & I + (1 | G) + (1 | H)
logLik -2 logLik AIC BIC
-1.18792777×10⁵ 2.37585553×10⁵ 2.37647553×10⁵ 2.37932876×10⁵
Variance components:
Column Variance Std.Dev.
G (Intercept) 0.10541798 0.32468136
H (Intercept) 0.25841636 0.50834669
Residual 1.38472777 1.17674456
Number of obs: 73421; levels of grouping factors: 2972, 1128
Fixed-effects parameters:
────────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
────────────────────────────────────────────────────────
(Intercept) 3.22961 0.064053 50.4209 <1e-99
A: 1 0.252025 0.0686507 3.67112 0.0002
I: 5 0.129536 0.101294 1.27882 0.2010
I: 10 -0.176751 0.0881352 -2.00545 0.0449
I: 12 0.0517102 0.0817523 0.632522 0.5270
I: 6 0.0347319 0.085621 0.405647 0.6850
I: 7 0.14594 0.0997984 1.46235 0.1436
I: 4 0.151689 0.0816897 1.85689 0.0633
I: 8 0.104206 0.118751 0.877517 0.3802
I: 9 0.0440401 0.0962985 0.457329 0.6474
I: 14 0.0517546 0.0986029 0.524879 0.5997
I: 1 0.0466719 0.101942 0.457828 0.6471
I: 3 0.0563461 0.0977925 0.57618 0.5645
I: 11 0.0596536 0.100233 0.59515 0.5517
I: 2 0.0055628 0.110867 0.0501756 0.9600
A: 1 & I: 5 -0.180757 0.123179 -1.46744 0.1423
A: 1 & I: 10 0.0186492 0.110017 0.169513 0.8654
A: 1 & I: 12 -0.282269 0.0792937 -3.55979 0.0004
A: 1 & I: 6 -0.494464 0.0790278 -6.25683 <1e-9
A: 1 & I: 7 -0.392054 0.110313 -3.55403 0.0004
A: 1 & I: 4 -0.278547 0.0823727 -3.38154 0.0007
A: 1 & I: 8 -0.189526 0.111449 -1.70056 0.0890
A: 1 & I: 9 -0.499868 0.0885423 -5.64553 <1e-7
A: 1 & I: 14 -0.497162 0.0917162 -5.42065 <1e-7
A: 1 & I: 1 -0.24042 0.0982071 -2.4481 0.0144
A: 1 & I: 3 -0.223013 0.0890548 -2.50422 0.0123
A: 1 & I: 11 -0.516997 0.0809077 -6.38997 <1e-9
A: 1 & I: 2 -0.384773 0.091843 -4.18946 <1e-4
────────────────────────────────────────────────────────
Simplifying the random effect correlation structure
MixedEffects.jl estimates not only the variance of the effects for each random effect level, but also the correlation between the random effects for different predictors. So, for the model of the sleepstudy data above, one of the parameters that is estimated is the correlation between each subject's random intercept (i.e., their baseline reaction time) and slope (i.e., their particular change in reaction time over days of sleep deprivation). In some cases, you may wish to simplify the random effects structure by removing these correlation parameters. This often arises when there are many random effects you want to estimate (as is common in psychological experiments with many conditions and covariates), since the number of random effects parameters increases as the square of the number of predictors, making these models difficult to estimate from limited data.
A model with uncorrelated random effects for the intercept and slope by subject is fit as
julia> fm3 = fit!(zerocorr!(LinearMixedModel(@formula(Y ~ 1+U+(1+U|G)),
dat[:sleepstudy])))
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + (1 + U | G)
logLik -2 logLik AIC BIC
-876.00163 1752.00326 1762.00326 1777.96804
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 584.258970 24.17145
U 33.632805 5.79938 .
Residual 653.115782 25.55613
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
───────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
───────────────────────────────────────────────────
(Intercept) 251.405 6.70771 37.48 <1e-99
U 10.4673 1.51931 6.88951 <1e-11
───────────────────────────────────────────────────
Note that the use of zerocorr!
requires the model to be constructed, then altered to eliminate the correlation of the random effects, then fit with a call to the mutating function, fit!
.
MixedModels.zerocorr!
— Function.zerocorr!(m::LinearMixedModel[, trmnms::Vector{Symbol}])
Rewrite the random effects specification for the grouping factors in trmnms
to zero correlation parameter.
The default for trmnms
is all the names of random-effects terms.
A random effects term is in the zero correlation parameter configuration when the off-diagonal elements of λ are all zero - hence there are no correlation parameters in that term being estimated.
The special syntax zerocorr
can be applied to individual random effects terms inside the @formula
:
MixedModels.zerocorr
— Function.zerocorr(term::RandomEffectsTerm)
Remove correlations between random effects in term
.
julia> fit(MixedModel, @formula(Y ~ 1 + U + zerocorr(1+U|G)), dat[:sleepstudy])
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + MixedModels.ZeroCorr((1 + U | G))
logLik -2 logLik AIC BIC
-876.00163 1752.00326 1762.00326 1777.96804
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 584.258970 24.17145
U 33.632805 5.79938 .
Residual 653.115782 25.55613
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
───────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
───────────────────────────────────────────────────
(Intercept) 251.405 6.70771 37.48 <1e-99
U 10.4673 1.51931 6.88951 <1e-11
───────────────────────────────────────────────────
Alternatively, correlations between parameters can be removed by including them as separate random effects terms:
julia> fit(MixedModel, @formula(Y ~ 1+U+(1|G)+(0+U|G)), dat[:sleepstudy])
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + (1 | G) + (0 + U | G)
logLik -2 logLik AIC BIC
-876.00163 1752.00326 1762.00326 1777.96804
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 584.258970 24.17145
U 33.632805 5.79938 .
Residual 653.115782 25.55613
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
───────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
───────────────────────────────────────────────────
(Intercept) 251.405 6.70771 37.48 <1e-99
U 10.4673 1.51931 6.88951 <1e-11
───────────────────────────────────────────────────
Note that it is necessary to explicitly block the inclusion of an intercept term by adding 0
in the random-effects term (0+U|G)
.
Finally, for predictors that are categorical, MixedModels.jl will estimate correlations between each level. Notice the large number of correlation parameters if we treat U
as a categorical variable by giving it contrasts:
julia> fit(MixedModel, @formula(Y ~ 1+U+(1+U|G)), dat[:sleepstudy],
contrasts=Dict(:U=>DummyCoding()))
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + (1 + U | G)
logLik -2 logLik AIC BIC
-805.39922 1610.79843 1742.79843 1953.53359
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 955.578308 30.9124297
U: 1.0 497.183571 22.2976136 -0.30
U: 2.0 915.645818 30.2596401 -0.57 0.75
U: 3.0 1267.226692 35.5981276 -0.37 0.72 0.87
U: 4.0 1484.909119 38.5345185 -0.31 0.59 0.67 0.91
U: 5.0 2296.038533 47.9169963 -0.25 0.46 0.45 0.70 0.85
U: 6.0 3850.672299 62.0537855 -0.28 0.30 0.48 0.70 0.77 0.75
U: 7.0 1806.262575 42.5001479 -0.16 0.22 0.47 0.50 0.63 0.64 0.71
U: 8.0 3151.792889 56.1408309 -0.20 0.29 0.36 0.56 0.73 0.90 0.73 0.74
U: 9.0 3075.767360 55.4596011 0.06 0.25 0.16 0.38 0.59 0.78 0.38 0.53 0.85
Residual 19.261211 4.3887597
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
────────────────────────────────────────────────────
(Intercept) 256.652 7.3592 34.875 <1e-99
U: 1.0 7.84395 5.45541 1.43783 0.1505
U: 2.0 8.71009 7.28075 1.19632 0.2316
U: 3.0 26.3402 8.51714 3.09261 0.0020
U: 4.0 31.9976 9.19973 3.4781 0.0005
U: 5.0 51.8667 11.3885 4.5543 <1e-5
U: 6.0 55.5265 14.6992 3.77752 0.0002
U: 7.0 62.0988 10.1236 6.13404 <1e-9
U: 8.0 79.9777 13.3131 6.00743 <1e-8
U: 9.0 94.1994 13.1536 7.16152 <1e-12
────────────────────────────────────────────────────
Separating the 1
and U
random effects into separate terms removes the correlations between the intercept and the levels of U
, but not between the levels themselves:
julia> fit(MixedModel, @formula(Y ~ 1+U+(1|G)+(0+U|G)), dat[:sleepstudy],
contrasts=Dict(:U=>DummyCoding()))
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + (1 | G) + (0 + U | G)
logLik -2 logLik AIC BIC
-805.39935 1610.79870 1744.79870 1958.72681
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 181.213462 13.4615550
U: 0.0 782.422065 27.9718084 .
U: 1.0 863.277684 29.3815875 . 0.69
U: 2.0 627.634941 25.0526434 . 0.34 0.73
U: 3.0 1231.455404 35.0920989 . 0.37 0.71 0.87
U: 4.0 1513.458193 38.9031900 . 0.36 0.60 0.65 0.91
U: 5.0 2335.558526 48.3276166 . 0.30 0.48 0.43 0.70 0.85
U: 6.0 3570.086607 59.7502017 . 0.14 0.25 0.41 0.66 0.74 0.73
U: 7.0 2171.047045 46.5944959 . 0.43 0.42 0.55 0.56 0.67 0.67 0.69
U: 8.0 3225.633405 56.7946600 . 0.26 0.34 0.35 0.57 0.73 0.90 0.72 0.75
U: 9.0 4044.254162 63.5944507 . 0.49 0.52 0.38 0.54 0.70 0.83 0.43 0.64 0.88
Residual 10.760307 3.2802908
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
────────────────────────────────────────────────────
(Intercept) 256.652 7.35752 34.8829 <1e-99
U: 1.0 7.84395 5.45364 1.4383 0.1504
U: 2.0 8.71009 7.28356 1.19586 0.2318
U: 3.0 26.3402 8.51764 3.09243 0.0020
U: 4.0 31.9976 9.19943 3.47822 0.0005
U: 5.0 51.8666 11.3926 4.55267 <1e-5
U: 6.0 55.5264 14.7034 3.77643 0.0002
U: 7.0 62.0988 10.1198 6.13637 <1e-9
U: 8.0 79.9777 13.32 6.00433 <1e-8
U: 9.0 94.1994 13.1575 7.1594 <1e-12
────────────────────────────────────────────────────
But using zerocorr
on the individual terms (or zerocorr!
on the constructed model object as above) does remove the correlations between the levels:
julia> fit(MixedModel, @formula(Y ~ 1+U+zerocorr(1+U|G)), dat[:sleepstudy],
contrasts=Dict(:U=>DummyCoding()))
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + MixedModels.ZeroCorr((1 + U | G))
logLik -2 logLik AIC BIC
-882.9138 1765.8276 1807.8276 1874.8797
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 958.56168 30.960647
U: 1.0 0.00000 0.000000 .
U: 2.0 0.00000 0.000000 . .
U: 3.0 0.00000 0.000000 . . .
U: 4.0 0.00000 0.000000 . . . .
U: 5.0 519.69396 22.796797 . . . . .
U: 6.0 1703.85878 41.277824 . . . . . .
U: 7.0 608.86850 24.675261 . . . . . . .
U: 8.0 1273.10854 35.680647 . . . . . . . .
U: 9.0 1753.94556 41.880133 . . . . . . . . .
Residual 434.85234 20.853113
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
────────────────────────────────────────────────────
(Intercept) 256.652 8.7984 29.1703 <1e-99
U: 1.0 7.84395 6.95104 1.12846 0.2591
U: 2.0 8.71009 6.95104 1.25306 0.2102
U: 3.0 26.3402 6.95104 3.78939 0.0002
U: 4.0 31.9976 6.95104 4.60329 <1e-5
U: 5.0 51.8666 8.78572 5.90352 <1e-8
U: 6.0 55.5264 11.9572 4.64375 <1e-5
U: 7.0 62.0988 9.06328 6.85169 <1e-11
U: 8.0 79.9777 10.9108 7.33015 <1e-12
U: 9.0 94.1994 12.073 7.80246 <1e-14
────────────────────────────────────────────────────
julia> fit(MixedModel, @formula(Y ~ 1+U+(1|G)+zerocorr(0+U|G)),dat[:sleepstudy],
contrasts=Dict(:U=>DummyCoding()))
Linear mixed model fit by maximum likelihood
Y ~ 1 + U + (1 | G) + MixedModels.ZeroCorr((0 + U | G))
logLik -2 logLik AIC BIC
-878.9844 1757.9688 1801.9688 1872.2139
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 1134.018890418 33.67519696
U: 0.0 775.482297289 27.84748278 .
U: 1.0 356.726068226 18.88719323 . .
U: 2.0 220.598457629 14.85255728 . . .
U: 3.0 0.041430896 0.20354581 . . . .
U: 4.0 43.482811564 6.59414980 . . . . .
U: 5.0 670.667693798 25.89725263 . . . . . .
U: 6.0 1740.087547279 41.71435661 . . . . . . .
U: 7.0 904.947269466 30.08234149 . . . . . . . .
U: 8.0 1456.355135727 38.16222132 . . . . . . . . .
U: 9.0 2026.627987970 45.01808512 . . . . . . . . . .
Residual 181.681891819 13.47894253
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
─────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
─────────────────────────────────────────────────────
(Intercept) 256.652 10.7785 23.8114 <1e-99
U: 1.0 7.84395 9.11523 0.860533 0.3895
U: 2.0 8.71009 8.69049 1.00226 0.3162
U: 3.0 26.3402 7.95434 3.31143 0.0009
U: 4.0 31.9976 8.10462 3.94807 <1e-4
U: 5.0 51.8667 10.0264 5.17301 <1e-6
U: 6.0 55.5265 12.6468 4.39056 <1e-4
U: 7.0 62.0988 10.6557 5.82775 <1e-8
U: 8.0 79.9777 12.0074 6.6607 <1e-10
U: 9.0 94.1994 13.2612 7.10338 <1e-11
─────────────────────────────────────────────────────
Fitting generalized linear mixed models
To create a GLMM representation
GeneralizedLinearMixedModel
Generalized linear mixed-effects model representation
Fields
LMM
: aLinearMixedModel
- the local approximation to the GLMM.β
: the pivoted and possibly truncated fixed-effects vectorβ₀
: similar toβ
. Used in the PIRLS algorithm if step-halving is needed.θ
: covariance parameter vectorb
: similar tou
, equivalent tobroadcast!(*, b, LMM.Λ, u)
u
: a vector of matrices of random effectsu₀
: similar tou
. Used in the PIRLS algorithm if step-halving is needed.resp
: aGlmResp
objectη
: the linear predictorwt
: vector of prior case weights, a value ofT[]
indicates equal weights.
The following fields are used in adaptive Gauss-Hermite quadrature, which applies only to models with a single random-effects term, in which case their lengths are the number of levels in the grouping factor for that term. Otherwise they are zero-length vectors.
devc
: vector of deviance componentsdevc0
: vector of deviance components at offset of zerosd
: approximate standard deviation of the conditional densitymult
: multiplier
Properties
In addition to the fieldnames, the following names are also accessible through the .
extractor
theta
: synonym forθ
beta
: synonym forβ
σ
orsigma
: common scale parameter (value isNaN
for distributions without a scale parameter)lowerbd
: vector of lower bounds on the combined elements ofβ
andθ
formula
,trms
,A
,L
, andoptsum
: fields of theLMM
fieldX
: fixed-effects model matrixy
: response vector
the distribution family for the response, and possibly the link function, must be specified.
julia> verbaggform = @formula(r2 ~ 1+a+g+b+s+m+(1|id)+(1|item));
julia> gm1 = fit(MixedModel, verbaggform, dat[:VerbAgg], Bernoulli())
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 1)
r2 ~ 1 + a + g + b + s + m + (1 | id) + (1 | item)
Distribution: Distributions.Bernoulli{Float64}
Link: GLM.LogitLink()
Deviance: 8135.8329
Variance components:
Column Variance Std.Dev.
id (Intercept) 1.64355891 1.28201362
item (Intercept) 0.10735667 0.32765327
Number of obs: 7584; levels of grouping factors: 316, 24
Fixed-effects parameters:
─────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
─────────────────────────────────────────────────────
(Intercept) 0.553512 0.368905 1.50042 0.1335
a 0.05742 0.0160373 3.58041 0.0003
g: M 0.320766 0.183041 1.75243 0.0797
b: scold -1.05987 0.176294 -6.01194 <1e-8
b: shout -2.10387 0.178552 -11.783 <1e-31
s: self -1.05433 0.144737 -7.28446 <1e-12
m: do -0.707051 0.144558 -4.89112 <1e-5
─────────────────────────────────────────────────────
The canonical link, which is GLM.LogitLink
for the Bernoulli
distribution, is used if no explicit link is specified.
Note that, in keeping with convention in the GLM
package, the distribution family for a binary (i.e. 0/1) response is the Bernoulli
distribution. The Binomial
distribution is only used when the response is the fraction of trials returning a positive, in which case the number of trials must be specified as the case weights.
Optional arguments to fit!
An alternative approach is to create the GeneralizedLinearMixedModel
object then call fit!
on it. In this form optional arguments fast
and/or nAGQ
can be passed to the optimization process.
As the name implies, fast=true
, provides a faster but somewhat less accurate fit. These fits may suffice for model comparisons.
julia> gm1a = fit!(GeneralizedLinearMixedModel(verbaggform, dat[:VerbAgg],
Bernoulli()), fast=true)
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 1)
r2 ~ 1 + a + g + b + s + m + (1 | id) + (1 | item)
Distribution: Distributions.Bernoulli{Float64}
Link: GLM.LogitLink()
Deviance: 8136.1709
Variance components:
Column Variance Std.Dev.
id (Intercept) 1.636122430 1.27911001
item (Intercept) 0.108383391 0.32921633
Number of obs: 7584; levels of grouping factors: 316, 24
Fixed-effects parameters:
──────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
──────────────────────────────────────────────────────
(Intercept) 0.548543 0.368446 1.4888 0.1365
a 0.0543802 0.0159982 3.39915 0.0007
g: M 0.304244 0.182603 1.66614 0.0957
b: scold -1.01749 0.176943 -5.75038 <1e-8
b: shout -2.02067 0.179146 -11.2795 <1e-28
s: self -1.01255 0.145248 -6.97114 <1e-11
m: do -0.679102 0.145074 -4.68108 <1e-5
──────────────────────────────────────────────────────
julia> deviance(gm1a) - deviance(gm1)
0.33801565450448834
julia> @time fit!(GeneralizedLinearMixedModel(verbaggform, dat[:VerbAgg],
Bernoulli()));
3.930082 seconds (15.28 M allocations: 135.041 MiB, 1.75% gc time)
julia> @time fit!(GeneralizedLinearMixedModel(verbaggform, dat[:VerbAgg],
Bernoulli()), fast=true);
0.635499 seconds (2.44 M allocations: 27.878 MiB, 1.27% gc time)
The optional argument nAGQ=k
causes evaluation of the deviance function to use a k
point adaptive Gauss-Hermite quadrature rule. This method only applies to models with a single, simple, scalar random-effects term, such as
julia> contraform = @formula(use ~ 1+a+abs2(a)+l+urb+(1|d));
julia> @time gm2 = fit!(GeneralizedLinearMixedModel(contraform,
dat[:Contraception], Bernoulli()), nAGQ=9)
4.904342 seconds (9.16 M allocations: 319.795 MiB, 5.72% gc time)
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 9)
use ~ 1 + a + :(abs2(a)) + l + urb + (1 | d)
Distribution: Distributions.Bernoulli{Float64}
Link: GLM.LogitLink()
Deviance: 2372.4589
Variance components:
Column Variance Std.Dev.
d (Intercept) 0.22222789 0.47141053
Number of obs: 1934; levels of grouping factors: 60
Fixed-effects parameters:
─────────────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
─────────────────────────────────────────────────────────
(Intercept) -1.0354 0.171933 -6.02213 <1e-8
a 0.00353186 0.00909421 0.388363 0.6977
abs2(a) -0.00456294 0.000714433 -6.38679 <1e-9
l: 1 0.815183 0.159785 5.10173 <1e-6
l: 2 0.916476 0.18236 5.02565 <1e-6
l: 3+ 0.915342 0.183021 5.00131 <1e-6
urb: Y 0.696715 0.118142 5.89727 <1e-8
─────────────────────────────────────────────────────────
julia> @time deviance(fit!(GeneralizedLinearMixedModel(contraform,
dat[:Contraception], Bernoulli()), nAGQ=9, fast=true))
0.083751 seconds (421.33 k allocations: 5.277 MiB)
2372.5135926229646
julia> @time deviance(fit!(GeneralizedLinearMixedModel(contraform,
dat[:Contraception], Bernoulli())))
0.296034 seconds (1.47 M allocations: 14.747 MiB)
2372.7285827581495
julia> @time deviance(fit!(GeneralizedLinearMixedModel(contraform,
dat[:Contraception], Bernoulli()), fast=true))
0.074024 seconds (280.48 k allocations: 3.856 MiB, 19.05% gc time)
2372.784429135894
Extractor functions
LinearMixedModel
and GeneralizedLinearMixedModel
are subtypes of StatsBase.RegressionModel
which, in turn, is a subtype of StatsBase.StatisticalModel
. Many of the generic extractors defined in the StatsBase
package have methods for these models.
Model-fit statistics
The statistics describing the quality of the model fit include
StatsBase.loglikelihood
— Method.loglikelihood(obj::StatisticalModel)
Return the log-likelihood of the model.
StatsBase.aic
— Function.aic(obj::StatisticalModel)
Akaike's Information Criterion, defined as $-2 \log L + 2k$, with $L$ the likelihood of the model, and k
its number of consumed degrees of freedom (as returned by dof
).
StatsBase.bic
— Function.StatsBase.dof
— Method.dof(obj::StatisticalModel)
Return the number of degrees of freedom consumed in the model, including when applicable the intercept and the distribution's dispersion parameter.
StatsBase.nobs
— Method.nobs(obj::StatisticalModel)
Return the number of independent observations on which the model was fitted. Be careful when using this information, as the definition of an independent observation may vary depending on the model, on the format used to pass the data, on the sampling plan (if specified), etc.
julia> loglikelihood(fm1)
-163.66352994057004
julia> aic(fm1)
333.3270598811401
julia> bic(fm1)
337.5306520261266
julia> dof(fm1) # 1 fixed effect, 2 variances
3
julia> nobs(fm1) # 30 observations
30
julia> loglikelihood(gm1)
-4067.9164280257423
In general the deviance
of a statistical model fit is negative twice the log-likelihood adjusting for the saturated model.
StatsBase.deviance
— Method.deviance(obj::StatisticalModel)
Return the deviance of the model relative to a reference, which is usually when applicable the saturated model. It is equal, up to a constant, to $-2 \log L$, with $L$ the likelihood of the model.
Because it is not clear what the saturated model corresponding to a particular LinearMixedModel
should be, negative twice the log-likelihood is called the objective
.
MixedModels.objective
— Function.objective(m::LinearMixedModel)
Return negative twice the log-likelihood of model m
This value is also accessible as the deviance
but the user should bear in mind that this doesn't have all the properties of a deviance which is corrected for the saturated model. For example, it is not necessarily non-negative.
julia> objective(fm1)
327.3270598811401
julia> deviance(fm1)
327.3270598811401
The value optimized when fitting a GeneralizedLinearMixedModel
is the Laplace approximation to the deviance or an adaptive Gauss-Hermite evaluation.
MixedModels.deviance!
— Function.deviance!(m::GeneralizedLinearMixedModel, nAGQ=1)
Update m.η
, m.μ
, etc., install the working response and working weights in m.LMM
, update m.LMM.A
and m.LMM.R
, then evaluate the deviance
.
julia> MixedModels.deviance!(gm1)
8135.832856051482
Fixed-effects parameter estimates
The coef
and fixef
extractors both return the maximum likelihood estimates of the fixed-effects coefficients.
StatsBase.coef
— Function.coef(obj::StatisticalModel)
Return the coefficients of the model.
MixedModels.fixef
— Function.fixef(m::MixedModel, permuted=true)
Return the fixed-effects parameter vector estimate of m
.
If permuted
is true
the vector elements are permuted according to m.trms[end - 1].piv
and truncated to the rank of that term.
julia> show(coef(fm1))
[1527.4999999999993]
julia> show(fixef(fm1))
[1527.4999999999993]
julia> show(fixef(gm1))
[0.5535116086379206, 0.05742001139348312, 0.32076602931752635, -1.059867665970283, -2.103869984409917, -1.0543329105826895, -0.7070511487154889]
An alternative extractor for the fixed-effects coefficient is the β
property. Properties whose names are Greek letters usually have an alternative spelling, which is the name of the Greek letter.
julia> show(fm1.β)
[1527.4999999999993]
julia> show(fm1.beta)
[1527.4999999999993]
julia> show(gm1.β)
[0.5535116086379206, 0.05742001139348312, 0.32076602931752635, -1.059867665970283, -2.103869984409917, -1.0543329105826895, -0.7070511487154889]
A full list of property names is returned by propertynames
julia> propertynames(fm1)
(:formula, :sqrtwts, :A, :L, :optsum, :θ, :theta, :β, :beta, :λ, :lambda, :stderror, :σ, :sigma, :σs, :sigmas, :b, :u, :lowerbd, :X, :y, :rePCA, :reterms, :feterms, :objective, :pvalues)
julia> propertynames(gm1)
(:A, :L, :theta, :beta, :coef, :λ, :lambda, :σ, :sigma, :X, :y, :lowerbd, :σρs, :σs, :LMM, :β, :β₀, :θ, :b, :u, :u₀, :resp, :η, :wt, :devc, :devc0, :sd, :mult)
The variance-covariance matrix of the fixed-effects coefficients is returned by
StatsBase.vcov
— Function.vcov(obj::StatisticalModel)
Return the variance-covariance matrix for the coefficients of the model.
julia> vcov(fm2)
2×2 Array{Float64,2}:
43.9868 -1.37039
-1.37039 2.25671
julia> vcov(gm1)
7×7 Array{Float64,2}:
0.136091 -0.00513612 -0.00895404 … -0.0104975 -0.0104986
-0.00513612 0.000257194 6.59009e-5 -1.35602e-5 -9.38556e-6
-0.00895404 6.59009e-5 0.0335039 -7.37176e-5 -4.81924e-5
-0.0155523 -1.31704e-5 -8.4825e-5 0.000243582 0.000157714
-0.0157104 -2.6628e-5 -0.000148816 0.000603881 0.000477019
-0.0104975 -1.35602e-5 -7.37176e-5 … 0.0209489 0.000227073
-0.0104986 -9.38556e-6 -4.81924e-5 0.000227073 0.0208971
The standard errors are the square roots of the diagonal elements of the estimated variance-covariance matrix of the fixed-effects coefficient estimators.
StatsBase.stderror
— Function.stderror(obj::StatisticalModel)
Return the standard errors for the coefficients of the model.
julia> show(StatsBase.stderror(fm2))
[6.632257825314581, 1.502235453639816]
julia> show(StatsBase.stderror(gm1))
[0.36890512061819736, 0.01603727875112492, 0.1830407884432926, 0.1762937885165568, 0.17855176330630151, 0.1447372582156264, 0.14455818519253938]
Finally, the coeftable
generic produces a table of coefficient estimates, their standard errors, and their ratio. The p-values quoted here should be regarded as approximations.
StatsBase.coeftable
— Function.coeftable(obj::StatisticalModel; level::Real=0.95)
Return a table of class CoefTable
with coefficients and related statistics. level
determines the level for confidence intervals (by default, 95%).
julia> coeftable(fm2)
───────────────────────────────────────────────────
Estimate Std.Error z value P(>|z|)
───────────────────────────────────────────────────
(Intercept) 251.405 6.63226 37.9064 <1e-99
U 10.4673 1.50224 6.96781 <1e-11
───────────────────────────────────────────────────
Covariance parameter estimates
The covariance parameters estimates, in the form shown in the model summary, are a VarCorr
object
MixedModels.VarCorr
— Type.VarCorr
Information from the fitted random-effects variance-covariance matrices.
Members
σρ
: aNamedTuple
ofNamedTuple
s as returned fromσρs
s
: the estimate of the scale parameter in the distribution of the conditional dist'n of Y
The main purpose of defining this type is to isolate the logic in the show method.
julia> VarCorr(fm2)
Variance components:
Column Variance Std.Dev. Corr.
G (Intercept) 565.51069 23.780469
U 32.68212 5.716828 0.08
Residual 654.94145 25.591824
julia> VarCorr(gm1)
Variance components:
Column Variance Std.Dev.
id (Intercept) 1.64355891 1.28201362
item (Intercept) 0.10735667 0.32765327
Individual components are returned by other extractors
MixedModels.varest
— Function.varest(m::LinearMixedModel)
Returns the estimate of σ², the variance of the conditional distribution of Y given B.
MixedModels.sdest
— Function.sdest(m::LinearMixedModel)
Return the estimate of σ, the standard deviation of the per-observation noise.
julia> varest(fm2)
654.9414513956141
julia> sdest(fm2)
25.59182391693906
julia> fm2.σ
25.59182391693906
Conditional modes of the random effects
The ranef
extractor
MixedModels.ranef
— Function.ranef(m::LinearMixedModel; uscale=false) #, named=true)
Return, as a Vector{Vector{T}}
(Vector{NamedVector{T}}
if named=true
), the conditional modes of the random effects in model m
.
If uscale
is true
the random effects are on the spherical (i.e. u
) scale, otherwise on the original scale.
julia> ranef(fm1)
1-element Array{Array{Float64,2},1}:
[-16.62822143006434 0.36951603177972425 … 53.57982460798641 -42.49434365460919]
julia> fm1.b
1-element Array{Array{Float64,2},1}:
[-16.62822143006434 0.36951603177972425 … 53.57982460798641 -42.49434365460919]
returns the conditional modes of the random effects given the observed data. That is, these are the values that maximize the conditional density of the random effects given the observed data. For a LinearMixedModel
these are also the conditional mean values.
These are sometimes called the best linear unbiased predictors or BLUPs
but that name is not particularly meaningful.
At a superficial level these can be considered as the "estimates" of the random effects, with a bit of hand waving, but pursuing this analogy too far usually results in confusion.
The corresponding conditional variances are returned by
MixedModels.condVar
— Function.condVar(m::LinearMixedModel)
Return the conditional variances matrices of the random effects.
The random effects are returned by ranef
as a vector of length k
, where k
is the number of random effects terms. The i
th element is a matrix of size vᵢ × ℓᵢ
where vᵢ
is the size of the vector-valued random effects for each of the ℓᵢ
levels of the grouping factor. Technically those values are the modes of the conditional distribution of the random effects given the observed data.
This function returns an array of k
three dimensional arrays, where the i
th array is of size vᵢ × vᵢ × ℓᵢ
. These are the diagonal blocks from the conditional variance-covariance matrix,
s² Λ(Λ'Z'ZΛ + I)⁻¹Λ'
julia> condVar(fm1)
1-element Array{Array{Float64,3},1}:
[362.3104715146578]
[362.3104715146578]
[362.3104715146578]
[362.3104715146578]
[362.3104715146578]
[362.3104715146578]