Model constructors
The LinearMixedModel
type represents a linear mixed-effects model. Typically it is constructed from a Formula
and an appropriate Table
type, usually a DataFrame
.
MixedModels.LinearMixedModel
— TypeLinearMixedModel
Linear mixed-effects model representation
Fields
formula
: the formula for the modelallterms
: a vector of random-effects terms, the fixed-effects terms and the responsereterms
: aVector{AbstractReMat{T}}
of random-effects terms.feterms
: aVector{FeMat{T}}
of the fixed-effects model matrix and the responsesqrtwts
: vector of square roots of the case weights. Can be empty.parmap
: Vector{NTuple{3,Int}} of (block, row, column) mapping of θ to λdims
: NamedTuple{(:n, :p, :nretrms),NTuple{3,Int}} of dimensions.p
is the rank ofX
, which may be smaller thansize(X, 2)
.A
: annt × nt
symmetricBlockMatrix
of matrices representinghcat(Z,X,y)'hcat(Z,X,y)
L
: ant × nt
BlockMatrix
- the lower Cholesky factor ofΛ'AΛ+I
optsum
: anOptSummary
object
Properties
θ
ortheta
: the covariance parameter vector used to form λβ
orbeta
: the fixed-effects coefficient vectorλ
orlambda
: a vector of lower triangular matrices repeated on the diagonal blocks ofΛ
σ
orsigma
: current value of the standard deviation of the per-observation noiseb
: random effects on the original scale, as a vector of matricesu
: random effects on the orthogonal scale, as a vector of matriceslowerbd
: lower bounds on the elements of θX
: the fixed-effects model matrixy
: the response vector
Examples of linear mixed-effects model fits
For illustration, several data sets from the lme4 package for R are made available in .arrow
format in this package. Often, for convenience, we will convert these to DataFrame
s. These data sets include the dyestuff
and dyestuff2
data sets.
MixedModels.dataset
— Functiondataset(nm)
Return, as an Arrow.Table
, the test data set named nm
, which can be a String
or Symbol
using DataFrames, MixedModels
using StatsBase: describe
dyestuff = DataFrame(MixedModels.dataset(:dyestuff))
describe(dyestuff)
variable | mean | min | median | max | nunique | nmissing | eltype | |
---|---|---|---|---|---|---|---|---|
Symbol | Union… | Any | Union… | Any | Union… | Nothing | DataType | |
1 | batch | A | F | 6 | String | |||
2 | yield | 1527.5 | 1440 | 1530.0 | 1635 | Int16 |
Models with simple, scalar random effects
The formula language in Julia is similar to that in R which is based on (Wilkinson and Rogers 1973). In Julia a formula must be enclosed in a call to the @formula
macro.
StatsModels.@formula
— Macro@formula(ex)
Capture and parse a formula expression as a Formula
struct.
A formula is an abstract specification of a dependence between left-hand and right-hand side variables as in, e.g., a regression model. Each side specifies at a high level how tabular data is to be converted to a numerical matrix suitable for modeling. This specification looks something like Julia code, is represented as a Julia Expr
, but uses special syntax. The @formula
macro takes an expression like y ~ 1 + a*b
, transforms it according to the formula syntax rules into a lowered form (like y ~ 1 + a + b + a&b
), and constructs a Formula
struct which captures the original expression, the lowered expression, and the left- and right-hand-side.
Operators that have special interpretations in this syntax are
~
is the formula separator, where it is a binary operator (the first argument is the left-hand side, and the second is the right-hand side.+
concatenates variables as columns when generating a model matrix.&
representes an interaction between two or more variables, which corresponds to a row-wise kronecker product of the individual terms (or element-wise product if all terms involved are continuous/scalar).*
expands to all main effects and interactions:a*b
is equivalent toa+b+a&b
,a*b*c
toa+b+c+a&b+a&c+b&c+a&b&c
, etc.1
,0
, and-1
indicate the presence (for1
) or absence (for0
and-1
) of an intercept column.
The rules that are applied are
- The associative rule (un-nests nested calls to
+
,&
, and*
). - The distributive rule (interactions
&
distribute over concatenation+
). - The
*
rule expandsa*b
toa+b+a&b
(recursively). - Subtraction is converted to addition and negation, so
x-1
becomesx + -1
(applies only to subtraction of literal 1). - Single-argument
&
calls are stripped, so&(x)
becomes the main effectx
.
A basic model with simple, scalar random effects for the levels of batch
(the batch of an intermediate product, in this case) is declared and fit as
fm = @formula(yield ~ 1 + (1|batch))
fm1 = fit(MixedModel, fm, dyestuff)
Linear mixed model fit by maximum likelihood yield ~ 1 + (1 | batch) logLik -2 logLik AIC AICc BIC -163.6635 327.3271 333.3271 334.2501 337.5307 Variance components: Column Variance Std.Dev. batch (Intercept) 1388.3333 37.2603 Residual 2451.2500 49.5101 Number of obs: 30; levels of grouping factors: 6 Fixed-effects parameters: ──────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ──────────────────────────────────────────────── (Intercept) 1527.5 17.6946 86.33 <1e-99 ────────────────────────────────────────────────
(If you are new to Julia you may find that this first fit takes an unexpectedly long time, due to Just-In-Time (JIT) compilation of the code. The subsequent calls to such functions are much faster.)
using BenchmarkTools
dyestuff2 = MixedModels.dataset(:dyestuff2)
@benchmark fit(MixedModel, $fm, $dyestuff2)
BenchmarkTools.Trial: memory estimate: 57.91 KiB allocs estimate: 1129 -------------- minimum time: 295.894 μs (0.00% GC) median time: 350.094 μs (0.00% GC) mean time: 388.377 μs (5.24% GC) maximum time: 47.754 ms (95.23% GC) -------------- samples: 10000 evals/sample: 1
By default, the model is fit by maximum likelihood. To use the REML
criterion instead, add the optional named argument REML=true
to the call to fit
fm1reml = fit(MixedModel, fm, dyestuff, REML=true)
Linear mixed model fit by REML yield ~ 1 + (1 | batch) REML criterion at convergence: 319.6542768422538 Variance components: Column Variance Std.Dev. batch (Intercept) 1764.0506 42.0006 Residual 2451.2499 49.5101 Number of obs: 30; levels of grouping factors: 6 Fixed-effects parameters: ──────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ──────────────────────────────────────────────── (Intercept) 1527.5 19.3834 78.80 <1e-99 ────────────────────────────────────────────────
Float-point type in the model
The type of fm1
typeof(fm1)
LinearMixedModel{Float64}
includes the floating point type used internally for the various matrices, vectors, etc. that represent the model. At present, this will always be Float64
because the parameter estimates are optimized using the NLopt
package which calls compiled C code that only allows for optimization with respect to a Float64
parameter vector.
So in theory other floating point types, such as BigFloat
or Float32
, can be used to define a model but in practice only Float64
works at present.
In theory, theory and practice are the same. In practice, they aren't. – Anon
Simple, scalar random effects
A simple, scalar random effects term in a mixed-effects model formula is of the form (1|G)
. All random effects terms end with |G
where G
is the grouping factor for the random effect. The name or, more generally, the expression G
should evaluate to a categorical array that has a distinct set of levels. The random effects are associated with the levels of the grouping factor.
A scalar random effect is, as the name implies, one scalar value for each level of the grouping factor. A simple, scalar random effects term is of the form, (1|G)
. It corresponds to a shift in the intercept for each level of the grouping factor.
Models with vector-valued random effects
The sleepstudy data are observations of reaction time, reaction
, on several subjects, subj
, after 0 to 9 days of sleep deprivation, days
. A model with random intercepts and random slopes for each subject, allowing for within-subject correlation of the slope and intercept, is fit as
sleepstudy = MixedModels.dataset(:sleepstudy)
fm2 = fit(MixedModel, @formula(reaction ~ 1 + days + (1 + days|subj)), sleepstudy)
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + (1 + days | subj) logLik -2 logLik AIC AICc BIC -875.9697 1751.9393 1763.9393 1764.4249 1783.0971 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 565.51069 23.78047 days 32.68212 5.71683 +0.08 Residual 654.94145 25.59182 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ────────────────────────────────────────────────── (Intercept) 251.405 6.63226 37.91 <1e-99 days 10.4673 1.50224 6.97 <1e-11 ──────────────────────────────────────────────────
Models with multiple, scalar random-effects terms
A model for the Penicillin data incorporates random effects for the plate, and for the sample. As every sample is used on every plate these two factors are crossed.
penicillin = MixedModels.dataset(:penicillin)
fm3 = fit(MixedModel, @formula(diameter ~ 1 + (1|plate) + (1|sample)), penicillin)
Linear mixed model fit by maximum likelihood diameter ~ 1 + (1 | plate) + (1 | sample) logLik -2 logLik AIC AICc BIC -166.0942 332.1883 340.1883 340.4761 352.0676 Variance components: Column Variance Std.Dev. plate (Intercept) 0.714979 0.845565 sample (Intercept) 3.135194 1.770648 Residual 0.302426 0.549933 Number of obs: 144; levels of grouping factors: 24, 6 Fixed-effects parameters: ───────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ───────────────────────────────────────────────── (Intercept) 22.9722 0.744596 30.85 <1e-99 ─────────────────────────────────────────────────
In contrast, the cask
grouping factor is nested within the batch
grouping factor in the Pastes data.
pastes = DataFrame(MixedModels.dataset(:pastes))
describe(pastes)
variable | mean | min | median | max | nunique | nmissing | eltype | |
---|---|---|---|---|---|---|---|---|
Symbol | Union… | Any | Union… | Any | Union… | Nothing | DataType | |
1 | batch | A | J | 10 | String | |||
2 | cask | a | c | 3 | String | |||
3 | strength | 60.0533 | 54.2 | 59.3 | 66.0 | Float64 |
This can be expressed using the solidus (the "/
" character) to separate grouping factors, read "cask
nested within batch
":
fm4a = fit(MixedModel, @formula(strength ~ 1 + (1|batch/cask)), pastes)
Linear mixed model fit by maximum likelihood strength ~ 1 + (1 | batch) + (1 | batch & cask) logLik -2 logLik AIC AICc BIC -123.9972 247.9945 255.9945 256.7217 264.3718 Variance components: Column Variance Std.Dev. batch & cask (Intercept) 8.433616 2.904069 batch (Intercept) 1.199180 1.095071 Residual 0.678002 0.823409 Number of obs: 60; levels of grouping factors: 30, 10 Fixed-effects parameters: ───────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ───────────────────────────────────────────────── (Intercept) 60.0533 0.642136 93.52 <1e-99 ─────────────────────────────────────────────────
If the levels of the inner grouping factor are unique across the levels of the outer grouping factor, then this nesting does not need to expressed explicitly in the model syntax. For example, defining sample
to be the combination of batch
and cask
, yields a naming scheme where the nesting is apparent from the data even if not expressed in the formula. (That is, each level of sample
occurs in conjunction with only one level of batch
.) As such, this model is equivalent to the previous one.
pastes.sample = (string.(pastes.cask, "&", pastes.batch))
fm4b = fit(MixedModel, @formula(strength ~ 1 + (1|sample) + (1|batch)), pastes)
Linear mixed model fit by maximum likelihood strength ~ 1 + (1 | sample) + (1 | batch) logLik -2 logLik AIC AICc BIC -123.9972 247.9945 255.9945 256.7217 264.3718 Variance components: Column Variance Std.Dev. sample (Intercept) 8.433617 2.904069 batch (Intercept) 1.199179 1.095070 Residual 0.678002 0.823409 Number of obs: 60; levels of grouping factors: 30, 10 Fixed-effects parameters: ───────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ───────────────────────────────────────────────── (Intercept) 60.0533 0.642136 93.52 <1e-99 ─────────────────────────────────────────────────
In observational studies it is common to encounter partially crossed grouping factors. For example, the InstEval data are course evaluations by students, s
, of instructors, d
. Additional covariates include the academic department, dept
, in which the course was given and service
, whether or not it was a service course.
insteval = MixedModels.dataset(:insteval)
fm5 = fit(MixedModel, @formula(y ~ 1 + service * dept + (1|s) + (1|d)), insteval)
Linear mixed model fit by maximum likelihood y ~ 1 + service + dept + service & dept + (1 | s) + (1 | d) logLik -2 logLik AIC AICc BIC -118792.7767 237585.5534 237647.5534 237647.5804 237932.8763 Variance components: Column Variance Std.Dev. s (Intercept) 0.105418 0.324681 d (Intercept) 0.258416 0.508347 Residual 1.384728 1.176745 Number of obs: 73421; levels of grouping factors: 2972, 1128 Fixed-effects parameters: ──────────────────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ──────────────────────────────────────────────────────────────── (Intercept) 3.27628 0.0793647 41.28 <1e-99 service: Y 0.0116044 0.0699321 0.17 0.8682 dept: D02 -0.0411091 0.120331 -0.34 0.7326 dept: D03 0.00967413 0.108411 0.09 0.9289 dept: D04 0.105017 0.0944964 1.11 0.2664 dept: D05 0.0828643 0.11148 0.74 0.4573 dept: D06 -0.01194 0.0978342 -0.12 0.9029 dept: D07 0.0992679 0.110598 0.90 0.3694 dept: D08 0.0575337 0.127935 0.45 0.6529 dept: D09 -0.00263181 0.107085 -0.02 0.9804 dept: D10 -0.223423 0.099838 -2.24 0.0252 dept: D11 0.0129816 0.110639 0.12 0.9066 dept: D12 0.00503825 0.0944243 0.05 0.9574 dept: D14 0.0050827 0.109041 0.05 0.9628 dept: D15 -0.0466719 0.101942 -0.46 0.6471 service: Y & dept: D02 -0.144352 0.0929527 -1.55 0.1204 service: Y & dept: D03 0.0174078 0.0927237 0.19 0.8511 service: Y & dept: D04 -0.0381262 0.0810901 -0.47 0.6382 service: Y & dept: D05 0.0596632 0.123952 0.48 0.6303 service: Y & dept: D06 -0.254044 0.080781 -3.14 0.0017 service: Y & dept: D07 -0.151634 0.11157 -1.36 0.1741 service: Y & dept: D08 0.0508942 0.112189 0.45 0.6501 service: Y & dept: D09 -0.259448 0.0899448 -2.88 0.0039 service: Y & dept: D10 0.25907 0.111369 2.33 0.0200 service: Y & dept: D11 -0.276577 0.0819621 -3.37 0.0007 service: Y & dept: D12 -0.0418489 0.0792928 -0.53 0.5977 service: Y & dept: D14 -0.256742 0.0931016 -2.76 0.0058 service: Y & dept: D15 0.24042 0.0982071 2.45 0.0144 ────────────────────────────────────────────────────────────────
Simplifying the random effect correlation structure
MixedModels.jl estimates not only the variance of the effects for each random effect level, but also the correlation between the random effects for different predictors. So, for the model of the sleepstudy data above, one of the parameters that is estimated is the correlation between each subject's random intercept (i.e., their baseline reaction time) and slope (i.e., their particular change in reaction time per day of sleep deprivation). In some cases, you may wish to simplify the random effects structure by removing these correlation parameters. This often arises when there are many random effects you want to estimate (as is common in psychological experiments with many conditions and covariates), since the number of random effects parameters increases as the square of the number of predictors, making these models difficult to estimate from limited data.
The special syntax zerocorr
can be applied to individual random effects terms inside the @formula
:
fm2zerocorr_fm = fit(MixedModel, @formula(reaction ~ 1 + days + zerocorr(1 + days|subj)), sleepstudy)
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + MixedModels.ZeroCorr((1 + days | subj)) logLik -2 logLik AIC AICc BIC -876.0016 1752.0033 1762.0033 1762.3481 1777.9680 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 584.25897 24.17145 days 33.63281 5.79938 . Residual 653.11578 25.55613 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ────────────────────────────────────────────────── (Intercept) 251.405 6.70771 37.48 <1e-99 days 10.4673 1.51931 6.89 <1e-11 ──────────────────────────────────────────────────
Alternatively, correlations between parameters can be removed by including them as separate random effects terms:
fit(MixedModel, @formula(reaction ~ 1 + days + (1|subj) + (days|subj)), sleepstudy)
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + (1 | subj) + (days | subj) logLik -2 logLik AIC AICc BIC -876.0016 1752.0033 1762.0033 1762.3481 1777.9680 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 584.25897 24.17145 days 33.63281 5.79938 . Residual 653.11578 25.55613 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ────────────────────────────────────────────────── (Intercept) 251.405 6.70771 37.48 <1e-99 days 10.4673 1.51931 6.89 <1e-11 ──────────────────────────────────────────────────
Finally, for predictors that are categorical, MixedModels.jl will estimate correlations between each level. Notice the large number of correlation parameters if we treat days
as a categorical variable by giving it contrasts:
fit(MixedModel, @formula(reaction ~ 1 + days + (1 + days|subj)), sleepstudy,
contrasts = Dict(:days => DummyCoding()))
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + (1 + days | subj) logLik -2 logLik AIC AICc BIC -805.3993 1610.7985 1742.7985 1821.0640 1953.5337 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 956.16843 30.92197 days: 1 497.04350 22.29447 -0.30 days: 2 915.85978 30.26318 -0.57 +0.75 days: 3 1267.14813 35.59702 -0.37 +0.72 +0.87 days: 4 1484.70937 38.53193 -0.32 +0.58 +0.67 +0.91 days: 5 2296.94899 47.92650 -0.25 +0.46 +0.45 +0.70 +0.85 days: 6 3849.41364 62.04364 -0.28 +0.30 +0.48 +0.70 +0.77 +0.75 days: 7 1805.20141 42.48766 -0.16 +0.22 +0.47 +0.50 +0.63 +0.64 +0.71 days: 8 3153.67996 56.15763 -0.20 +0.29 +0.36 +0.56 +0.73 +0.90 +0.73 +0.74 days: 9 3075.28984 55.45530 +0.05 +0.25 +0.16 +0.38 +0.59 +0.78 +0.38 +0.53 +0.85 Residual 19.24598 4.38702 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ─────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ─────────────────────────────────────────────────── (Intercept) 256.652 7.36136 34.86 <1e-99 days: 1 7.84395 5.45454 1.44 0.1504 days: 2 8.71009 7.28145 1.20 0.2316 days: 3 26.3402 8.51678 3.09 0.0020 days: 4 31.9976 9.19904 3.48 0.0005 days: 5 51.8666 11.3906 4.55 <1e-05 days: 6 55.5264 14.6968 3.78 0.0002 days: 7 62.0988 10.1206 6.14 <1e-09 days: 8 79.9777 13.317 6.01 <1e-08 days: 9 94.1994 13.1525 7.16 <1e-12 ───────────────────────────────────────────────────
Separating the 1
and days
random effects into separate terms removes the correlations between the intercept and the levels of days
, but not between the levels themselves:
fit(MixedModel, @formula(reaction ~ 1 + days + (1|subj) + (days|subj)), sleepstudy,
contrasts = Dict(:days => DummyCoding()))
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + (1 | subj) + (days | subj) logLik -2 logLik AIC AICc BIC -827.7748 1655.5496 1769.5496 1823.7463 1951.5482 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 789.8157 28.1037 days: 1 0.0000 0.0000 . days: 2 357.6745 18.9123 . NaN days: 3 684.5752 26.1644 . NaN +0.81 days: 4 949.5146 30.8142 . NaN +0.57 +0.91 days: 5 1752.0021 41.8569 . NaN +0.26 +0.66 +0.87 days: 6 3355.6664 57.9281 . NaN +0.45 +0.72 +0.80 +0.76 days: 7 1538.9135 39.2290 . NaN +0.39 +0.42 +0.59 +0.62 +0.71 days: 8 2736.2930 52.3096 . NaN +0.22 +0.52 +0.75 +0.93 +0.72 +0.75 days: 9 2768.2331 52.6140 . NaN -0.05 +0.28 +0.57 +0.80 +0.34 +0.52 +0.87 Residual 135.0177 11.6197 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ─────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ─────────────────────────────────────────────────── (Intercept) 256.652 7.16796 35.81 <1e-99 days: 1 7.84395 3.87324 2.03 0.0429 days: 2 8.71009 5.90532 1.47 0.1402 days: 3 26.3402 7.28244 3.62 0.0003 days: 4 31.9976 8.23121 3.89 0.0001 days: 5 51.8667 10.5988 4.89 <1e-06 days: 6 55.5265 14.1925 3.91 <1e-04 days: 7 62.0988 10.0248 6.19 <1e-09 days: 8 79.9777 12.9236 6.19 <1e-09 days: 9 94.1994 12.992 7.25 <1e-12 ───────────────────────────────────────────────────
(Notice that the variance component for days: 1
is estimated as zero, so the correlations for this component are undefined and expressed as NaN
, not a number.)
An alternative is to force all the levels of days
as indicators using fulldummy
encoding.
MixedModels.fulldummy
— Functionfulldummy(term::CategoricalTerm)
Assign "contrasts" that include all indicator columns (dummy variables) and an intercept column.
This will result in an under-determined set of contrasts, which is not a problem in the random effects because of the regularization, or "shrinkage", of the conditional modes.
The interaction of fulldummy
with complex random effects is subtle and complex with numerous potential edge cases. As we discover these edge cases, we will document and determine their behavior. Until such time, please check the model summary to verify that the expansion is working as you expected. If it is not, please report a use case on GitHub.
fit(MixedModel, @formula(reaction ~ 1 + days + (1 + fulldummy(days)|subj)), sleepstudy,
contrasts = Dict(:days => DummyCoding()))
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + (1 + days | subj) logLik -2 logLik AIC AICc BIC -805.3991 1610.7982 1764.7982 1882.5630 2010.6559 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 691.51895 26.29675 days: 0 472.08523 21.72752 -0.18 days: 1 427.62891 20.67919 -0.08 +0.45 days: 2 426.31157 20.64731 -0.29 -0.02 +0.53 days: 3 358.23780 18.92717 +0.36 -0.53 +0.21 +0.60 days: 4 351.41637 18.74610 +0.66 -0.81 -0.26 -0.09 +0.66 days: 5 1155.74302 33.99622 +0.37 -0.45 -0.17 -0.22 +0.26 +0.67 days: 6 2377.88790 48.76359 +0.27 -0.48 -0.36 -0.07 +0.38 +0.60 +0.56 days: 7 1182.36885 34.38559 +0.26 -0.10 -0.19 +0.07 -0.01 +0.22 +0.37 +0.50 days: 8 1983.74678 44.53927 +0.31 -0.36 -0.29 -0.24 +0.10 +0.50 +0.83 +0.56 +0.57 days: 9 2395.74371 48.94633 +0.44 -0.10 -0.06 -0.31 -0.05 +0.38 +0.69 +0.10 +0.35 +0.80 Residual 19.13253 4.37407 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ─────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ─────────────────────────────────────────────────── (Intercept) 256.652 7.35933 34.87 <1e-99 days: 1 7.84395 5.4559 1.44 0.1505 days: 2 8.71009 7.28391 1.20 0.2318 days: 3 26.3402 8.52324 3.09 0.0020 days: 4 31.9976 9.20578 3.48 0.0005 days: 5 51.8666 11.3968 4.55 <1e-05 days: 6 55.5264 14.7108 3.77 0.0002 days: 7 62.0988 10.1325 6.13 <1e-09 days: 8 79.9777 13.3263 6.00 <1e-08 days: 9 94.1994 13.1581 7.16 <1e-12 ───────────────────────────────────────────────────
This fit produces a better fit as measured by the objective (negative twice the log-likelihood is 1610.8) but at the expense of adding many more parameters to the model. As a result, model comparison criteria such, as AIC
and BIC
, are inflated.
But using zerocorr
on the individual terms does remove the correlations between the levels:
fit(MixedModel, @formula(reaction ~ 1 + days + zerocorr(1 + days|subj)), sleepstudy,
contrasts = Dict(:days => DummyCoding()))
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + MixedModels.ZeroCorr((1 + days | subj)) logLik -2 logLik AIC AICc BIC -882.9138 1765.8276 1807.8276 1813.6757 1874.8797 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 958.5617 30.9606 days: 1 0.0000 0.0000 . days: 2 0.0000 0.0000 . . days: 3 0.0000 0.0000 . . . days: 4 0.0000 0.0000 . . . . days: 5 519.6940 22.7968 . . . . . days: 6 1703.8588 41.2778 . . . . . . days: 7 608.8685 24.6753 . . . . . . . days: 8 1273.1085 35.6806 . . . . . . . . days: 9 1753.9456 41.8801 . . . . . . . . . Residual 434.8523 20.8531 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ─────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ─────────────────────────────────────────────────── (Intercept) 256.652 8.7984 29.17 <1e-99 days: 1 7.84395 6.95104 1.13 0.2591 days: 2 8.71009 6.95104 1.25 0.2102 days: 3 26.3402 6.95104 3.79 0.0002 days: 4 31.9976 6.95104 4.60 <1e-05 days: 5 51.8666 8.78572 5.90 <1e-08 days: 6 55.5264 11.9572 4.64 <1e-05 days: 7 62.0988 9.06328 6.85 <1e-11 days: 8 79.9777 10.9108 7.33 <1e-12 days: 9 94.1994 12.073 7.80 <1e-14 ───────────────────────────────────────────────────
fit(MixedModel, @formula(reaction ~ 1 + days + (1|subj) + zerocorr(days|subj)), sleepstudy,
contrasts = Dict(:days => DummyCoding()))
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + (1 | subj) + MixedModels.ZeroCorr((days | subj)) logLik -2 logLik AIC AICc BIC -882.9138 1765.8276 1807.8276 1813.6757 1874.8797 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 958.5617 30.9606 days: 1 0.0000 0.0000 . days: 2 0.0000 0.0000 . . days: 3 0.0000 0.0000 . . . days: 4 0.0000 0.0000 . . . . days: 5 519.6940 22.7968 . . . . . days: 6 1703.8588 41.2778 . . . . . . days: 7 608.8685 24.6753 . . . . . . . days: 8 1273.1085 35.6806 . . . . . . . . days: 9 1753.9456 41.8801 . . . . . . . . . Residual 434.8523 20.8531 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ─────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ─────────────────────────────────────────────────── (Intercept) 256.652 8.7984 29.17 <1e-99 days: 1 7.84395 6.95104 1.13 0.2591 days: 2 8.71009 6.95104 1.25 0.2102 days: 3 26.3402 6.95104 3.79 0.0002 days: 4 31.9976 6.95104 4.60 <1e-05 days: 5 51.8666 8.78572 5.90 <1e-08 days: 6 55.5264 11.9572 4.64 <1e-05 days: 7 62.0988 9.06328 6.85 <1e-11 days: 8 79.9777 10.9108 7.33 <1e-12 days: 9 94.1994 12.073 7.80 <1e-14 ───────────────────────────────────────────────────
fit(MixedModel, @formula(reaction ~ 1 + days + zerocorr(1 + fulldummy(days)|subj)), sleepstudy,
contrasts = Dict(:days => DummyCoding()))
Linear mixed model fit by maximum likelihood reaction ~ 1 + days + MixedModels.ZeroCorr((1 + days | subj)) logLik -2 logLik AIC AICc BIC -878.9843 1757.9686 1801.9686 1808.4145 1872.2137 Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 1135.3845922 33.6954684 days: 0 776.0604926 27.8578623 . days: 1 357.7267988 18.9136670 . . days: 2 221.1165324 14.8699876 . . . days: 3 0.0024532 0.0495301 . . . . days: 4 44.5173907 6.6721354 . . . . . days: 5 670.5498913 25.8949781 . . . . . . days: 6 1740.1206146 41.7147530 . . . . . . . days: 7 908.9721651 30.1491652 . . . . . . . . days: 8 1458.0940000 38.1849971 . . . . . . . . . days: 9 2028.4320380 45.0381176 . . . . . . . . . . Residual 180.8469951 13.4479365 Number of obs: 180; levels of grouping factors: 18 Fixed-effects parameters: ─────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ─────────────────────────────────────────────────── (Intercept) 256.652 10.7814 23.81 <1e-99 days: 1 7.84395 9.11495 0.86 0.3895 days: 2 8.71009 8.68866 1.00 0.3161 days: 3 26.3402 7.95039 3.31 0.0009 days: 4 31.9976 8.10443 3.95 <1e-04 days: 5 51.8667 10.023 5.17 <1e-06 days: 6 55.5265 12.6444 4.39 <1e-04 days: 7 62.0988 10.6634 5.82 <1e-08 days: 8 79.9777 12.0089 6.66 <1e-10 days: 9 94.1994 13.2627 7.10 <1e-11 ───────────────────────────────────────────────────
Fitting generalized linear mixed models
To create a GLMM representation
MixedModels.GeneralizedLinearMixedModel
— TypeGeneralizedLinearMixedModel
Generalized linear mixed-effects model representation
Fields
LMM
: aLinearMixedModel
- the local approximation to the GLMM.β
: the pivoted and possibly truncated fixed-effects vectorβ₀
: similar toβ
. Used in the PIRLS algorithm if step-halving is needed.θ
: covariance parameter vectorb
: similar tou
, equivalent tobroadcast!(*, b, LMM.Λ, u)
u
: a vector of matrices of random effectsu₀
: similar tou
. Used in the PIRLS algorithm if step-halving is needed.resp
: aGlmResp
objectη
: the linear predictorwt
: vector of prior case weights, a value ofT[]
indicates equal weights.
The following fields are used in adaptive Gauss-Hermite quadrature, which applies only to models with a single random-effects term, in which case their lengths are the number of levels in the grouping factor for that term. Otherwise they are zero-length vectors.
devc
: vector of deviance componentsdevc0
: vector of deviance components at offset of zerosd
: approximate standard deviation of the conditional densitymult
: multiplier
Properties
In addition to the fieldnames, the following names are also accessible through the .
extractor
theta
: synonym forθ
beta
: synonym forβ
σ
orsigma
: common scale parameter (value isNaN
for distributions without a scale parameter)lowerbd
: vector of lower bounds on the combined elements ofβ
andθ
formula
,trms
,A
,L
, andoptsum
: fields of theLMM
fieldX
: fixed-effects model matrixy
: response vector
the distribution family for the response, and possibly the link function, must be specified.
verbagg = MixedModels.dataset(:verbagg)
verbaggform = @formula(r2 ~ 1 + anger + gender + btype + situ + mode + (1|subj) + (1|item));
gm1 = fit(MixedModel, verbaggform, verbagg, Bernoulli())
Generalized Linear Mixed Model fit by maximum likelihood (nAGQ = 1) r2 ~ 1 + anger + gender + btype + situ + mode + (1 | subj) + (1 | item) Distribution: Bernoulli{Float64} Link: LogitLink() logLik deviance AIC AICc BIC -4067.9164 8135.8329 8153.8329 8153.8566 8216.2370 Variance components: Column Variance Std.Dev. subj (Intercept) 1.793471 1.339205 item (Intercept) 0.117137 0.342253 Number of obs: 7584; levels of grouping factors: 316, 24 Fixed-effects parameters: ────────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ────────────────────────────────────────────────────── (Intercept) -0.152791 0.385217 -0.40 0.6916 anger 0.0573903 0.0167527 3.43 0.0006 gender: M 0.320786 0.191206 1.68 0.0934 btype: scold -1.05991 0.184151 -5.76 <1e-08 btype: shout -2.10398 0.186509 -11.28 <1e-28 situ: self -1.05438 0.151188 -6.97 <1e-11 mode: want 0.70702 0.151001 4.68 <1e-05 ──────────────────────────────────────────────────────
The canonical link, which is LogitLink
for the Bernoulli
distribution, is used if no explicit link is specified.
Note that, in keeping with convention in the GLM
package, the distribution family for a binary (i.e. 0/1) response is the Bernoulli
distribution. The Binomial
distribution is only used when the response is the fraction of trials returning a positive, in which case the number of trials must be specified as the case weights.
Optional arguments to fit
An alternative approach is to create the GeneralizedLinearMixedModel
object then call fit!
on it. The optional arguments fast
and/or nAGQ
can be passed to the optimization process via both fit
and fit!
(i.e these optimization settings are not used nor recognized when constructing the model).
As the name implies, fast=true
, provides a faster but somewhat less accurate fit. These fits may suffice for model comparisons.
gm1a = fit(MixedModel, verbaggform, verbagg, Bernoulli(), fast = true)
deviance(gm1a) - deviance(gm1)
@benchmark fit(MixedModel, $verbaggform, $verbagg, Bernoulli())
@benchmark fit(MixedModel, $verbaggform, $verbagg, Bernoulli(), fast = true)
BenchmarkTools.Trial: memory estimate: 11.63 MiB allocs estimate: 83551 -------------- minimum time: 434.721 ms (0.00% GC) median time: 442.984 ms (0.00% GC) mean time: 444.607 ms (0.00% GC) maximum time: 468.463 ms (0.00% GC) -------------- samples: 12 evals/sample: 1
The optional argument nAGQ=k
causes evaluation of the deviance function to use a k
point adaptive Gauss-Hermite quadrature rule. This method only applies to models with a single, simple, scalar random-effects term, such as
contraception = MixedModels.dataset(:contra)
contraform = @formula(use ~ 1 + age + abs2(age) + livch + urban + (1|dist));
bernoulli = Bernoulli()
deviances = Dict{Symbol,Float64}()
b = @benchmarkable deviances[:default] = deviance(fit(MixedModel, $contraform, $contraception, $bernoulli));
run(b)
b = @benchmarkable deviances[:fast] = deviance(fit(MixedModel, $contraform, $contraception, $bernoulli, fast = true));
run(b)
b = @benchmarkable deviances[:nAGQ] = deviance(fit(MixedModel, $contraform, $contraception, $bernoulli, nAGQ=9));
run(b)
b = @benchmarkable deviances[:nAGQ_fast] = deviance(fit(MixedModel, $contraform, $contraception, $bernoulli, nAGQ=9, fast=true));
run(b)
sort(deviances)
OrderedCollections.OrderedDict{Symbol, Float64} with 4 entries: :default => 2372.73 :fast => 2372.78 :nAGQ => 2372.46 :nAGQ_fast => 2372.51
Extractor functions
LinearMixedModel
and GeneralizedLinearMixedModel
are subtypes of StatsBase.RegressionModel
which, in turn, is a subtype of StatsBase.StatisticalModel
. Many of the generic extractors defined in the StatsBase
package have methods for these models.
Model-fit statistics
The statistics describing the quality of the model fit include
StatsBase.loglikelihood
— Methodloglikelihood(model::StatisticalModel)
Return the log-likelihood of the model.
StatsBase.aic
— Functionaic(model::StatisticalModel)
Akaike's Information Criterion, defined as $-2 \log L + 2k$, with $L$ the likelihood of the model, and k
its number of consumed degrees of freedom (as returned by dof
).
StatsBase.bic
— FunctionStatsBase.dof
— Methoddof(model::StatisticalModel)
Return the number of degrees of freedom consumed in the model, including when applicable the intercept and the distribution's dispersion parameter.
StatsBase.nobs
— Methodnobs(model::StatisticalModel)
Return the number of independent observations on which the model was fitted. Be careful when using this information, as the definition of an independent observation may vary depending on the model, on the format used to pass the data, on the sampling plan (if specified), etc.
loglikelihood(fm1)
-163.66352994057004
aic(fm1)
333.3270598811401
bic(fm1)
337.5306520261266
dof(fm1) # 1 fixed effect, 2 variances
3
nobs(fm1) # 30 observations
30
loglikelihood(gm1)
-4067.916430206548
In general the deviance
of a statistical model fit is negative twice the log-likelihood adjusting for the saturated model.
StatsBase.deviance
— Methoddeviance(model::StatisticalModel)
Return the deviance of the model relative to a reference, which is usually when applicable the saturated model. It is equal, up to a constant, to $-2 \log L$, with $L$ the likelihood of the model.
Because it is not clear what the saturated model corresponding to a particular LinearMixedModel
should be, negative twice the log-likelihood is called the objective
.
MixedModels.objective
— Functionobjective(m::LinearMixedModel)
Return negative twice the log-likelihood of model m
This value is also accessible as the deviance
but the user should bear in mind that this doesn't have all the properties of a deviance which is corrected for the saturated model. For example, it is not necessarily non-negative.
objective(fm1)
327.3270598811401
deviance(fm1)
327.3270598811401
The value optimized when fitting a GeneralizedLinearMixedModel
is the Laplace approximation to the deviance or an adaptive Gauss-Hermite evaluation.
MixedModels.deviance!
— Functiondeviance!(m::GeneralizedLinearMixedModel, nAGQ=1)
Update m.η
, m.μ
, etc., install the working response and working weights in m.LMM
, update m.LMM.A
and m.LMM.R
, then evaluate the deviance
.
MixedModels.deviance!(gm1)
8135.832860413099
Fixed-effects parameter estimates
The coef
and fixef
extractors both return the maximum likelihood estimates of the fixed-effects coefficients. They differ in their behavior in the rank-deficient case. The associated coefnames
and fixefnames
return the corresponding coefficient names.
StatsBase.coef
— Functioncoef(model::StatisticalModel)
Return the coefficients of the model.
StatsBase.coefnames
— Functioncoefnames(model::StatisticalModel)
Return the names of the coefficients.
coefnames(term::AbstractTerm)
Return the name(s) of column(s) generated by a term. Return value is either a String
or an iterable of String
s.
MixedModels.fixef
— Functionfixef(m::MixedModel)
Return the fixed-effects parameter vector estimate of m
.
In the rank-deficient case the truncated parameter vector, of length rank(m)
is returned. This is unlike coef
which always returns a vector whose length matches the number of columns in X
.
MixedModels.fixefnames
— Functionfixefnames(m::MixedModel)
Return a (permuted and truncated in the rank-deficient case) vector of coefficient names.
coef(fm1)
coefnames(fm1)
1-element Vector{String}: "(Intercept)"
fixef(fm1)
fixefnames(fm1)
1-element Vector{String}: "(Intercept)"
An alternative extractor for the fixed-effects coefficient is the β
property. Properties whose names are Greek letters usually have an alternative spelling, which is the name of the Greek letter.
fm1.β
1-element Vector{Float64}: 1527.4999999999993
fm1.beta
1-element Vector{Float64}: 1527.4999999999993
gm1.β
7-element Vector{Float64}: -0.15279123679334106 0.05739028136275959 0.3207863096008982 -1.059914203911305 -2.10398032428924 -1.0543786940179338 0.7070198407561885
A full list of property names is returned by propertynames
propertynames(fm1)
(:formula, :sqrtwts, :A, :L, :optsum, :θ, :theta, :β, :beta, :λ, :lambda, :stderror, :σ, :sigma, :σs, :sigmas, :b, :u, :lowerbd, :X, :y, :corr, :vcov, :PCA, :rePCA, :reterms, :feterms, :allterms, :objective, :pvalues)
propertynames(gm1)
(:A, :L, :theta, :beta, :coef, :fixef, :λ, :lambda, :σ, :sigma, :X, :y, :lowerbd, :objective, :σρs, :σs, :corr, :vcov, :PCA, :rePCA, :LMM, :β, :β₀, :θ, :b, :u, :u₀, :resp, :η, :wt, :devc, :devc0, :sd, :mult)
The variance-covariance matrix of the fixed-effects coefficients is returned by
StatsBase.vcov
— Functionvcov(model::StatisticalModel)
Return the variance-covariance matrix for the coefficients of the model.
vcov(m::MixedModel; corr=false)
Returns the variance-covariance matrix of the fixed effects. If corr=true
, then correlation of fixed effects is returned instead.
vcov(fm2)
2×2 Matrix{Float64}: 43.9868 -1.37039 -1.37039 2.25671
vcov(gm1)
7×7 Matrix{Float64}: 0.148392 -0.00561483 -0.00982334 … -0.0112063 -0.011346 -0.00561483 0.000280653 7.19115e-5 -1.47963e-5 1.02409e-5 -0.00982334 7.19115e-5 0.0365599 -8.04431e-5 5.25884e-5 -0.0167974 -1.43708e-5 -9.25637e-5 0.000265804 -0.0001721 -0.0166214 -2.90551e-5 -0.000162392 0.000658969 -0.000520526 -0.0112063 -1.47963e-5 -8.04431e-5 … 0.0228577 -0.000247783 -0.011346 1.02409e-5 5.25884e-5 -0.000247783 0.0228012
The standard errors are the square roots of the diagonal elements of the estimated variance-covariance matrix of the fixed-effects coefficient estimators.
StatsBase.stderror
— Functionstderror(model::StatisticalModel)
Return the standard errors for the coefficients of the model.
stderror(fm2)
2-element Vector{Float64}: 6.63225782531458 1.502235453639816
stderror(gm1)
7-element Vector{Float64}: 0.3852173194197659 0.016752703440790974 0.19120637608556615 0.18415061521167464 0.1865094286245418 0.1511877797756335 0.151000703244838
Finally, the coeftable
generic produces a table of coefficient estimates, their standard errors, and their ratio. The p-values quoted here should be regarded as approximations.
StatsBase.coeftable
— Functioncoeftable(model::StatisticalModel; level::Real=0.95)
Return a table with coefficients and related statistics of the model. level
determines the level for confidence intervals (by default, 95%).
The returned CoefTable
object implements the Tables.jl interface, and can be converted e.g. to a DataFrame
via using DataFrames; DataFrame(coeftable(model))
.
coeftable(fm2)
────────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ────────────────────────────────────────────────── (Intercept) 251.405 6.63226 37.91 <1e-99 days 10.4673 1.50224 6.97 <1e-11 ──────────────────────────────────────────────────
Covariance parameter estimates
The covariance parameters estimates, in the form shown in the model summary, are a VarCorr
object
MixedModels.VarCorr
— TypeVarCorr
Information from the fitted random-effects variance-covariance matrices.
Members
σρ
: aNamedTuple
ofNamedTuple
s as returned fromσρs
s
: the estimate of the per-observation dispersion parameter
The main purpose of defining this type is to isolate the logic in the show method.
VarCorr(fm2)
Variance components: Column Variance Std.Dev. Corr. subj (Intercept) 565.51069 23.78047 days 32.68212 5.71683 +0.08 Residual 654.94145 25.59182
VarCorr(gm1)
Variance components: Column Variance Std.Dev. subj (Intercept) 1.793471 1.339205 item (Intercept) 0.117137 0.342253
Individual components are returned by other extractors
MixedModels.varest
— Functionvarest(m::LinearMixedModel)
Returns the estimate of σ², the variance of the conditional distribution of Y given B.
varest(m::GeneralizedLinearMixedModel)
Returns the estimate of ϕ², the variance of the conditional distribution of Y given B.
For models with a dispersion parameter ϕ, this is simply ϕ². For models without a dispersion parameter, this value is missing
. This differs from disperion
, which returns 1
for models without a dispersion parameter.
For Gaussian models, this parameter is often called σ².
MixedModels.sdest
— Functionsdest(m::LinearMixedModel)
Return the estimate of σ, the standard deviation of the per-observation noise.
sdest(m::GeneralizedLinearMixedModel)
Return the estimate of the dispersion, i.e. the standard deviation of the per-observation noise.
For models with a dispersion parameter ϕ, this is simply ϕ. For models without a dispersion parameter, this value is missing
. This differs from disperion
, which returns 1
for models without a dispersion parameter.
For Gaussian models, this parameter is often called σ.
varest(fm2)
654.9414513956141
sdest(fm2)
25.59182391693906
fm2.σ
25.59182391693906
Conditional modes of the random effects
The ranef
extractor
MixedModels.ranef
— Functionranef(m::MixedModel; uscale=false)
Return, as a Vector{Matrix{T}}
, the conditional modes of the random effects in model m
.
If uscale
is true
the random effects are on the spherical (i.e. u
) scale, otherwise on the original scale.
For a named variant, see @raneftables
.
ranef(fm1)
1-element Vector{Matrix{Float64}}: [-16.62822143006434 0.36951603177972425 … 53.57982460798641 -42.49434365460919]
fm1.b
1-element Vector{Matrix{Float64}}: [-16.62822143006434 0.36951603177972425 … 53.57982460798641 -42.49434365460919]
returns the conditional modes of the random effects given the observed data. That is, these are the values that maximize the conditional density of the random effects given the observed data. For a LinearMixedModel
these are also the conditional mean values.
These are sometimes called the best linear unbiased predictors or BLUPs
but that name is not particularly meaningful.
At a superficial level these can be considered as the "estimates" of the random effects, with a bit of hand waving, but pursuing this analogy too far usually results in confusion.
To obtain tables associating the values of the conditional modes with the levels of the grouping factor, use
MixedModels.raneftables
— Functionraneftables(m::LinearMixedModel; uscale = false)
Return the conditional means of the random effects as a NamedTuple of columntables
as in
DataFrame(only(raneftables(fm1)))
batch | (Intercept) | |
---|---|---|
String | Float64 | |
1 | A | -16.6282 |
2 | B | 0.369516 |
3 | C | 26.9747 |
4 | D | -21.8014 |
5 | E | 53.5798 |
6 | F | -42.4943 |
The corresponding conditional variances are returned by
MixedModels.condVar
— FunctioncondVar(m::LinearMixedModel)
Return the conditional variances matrices of the random effects.
The random effects are returned by ranef
as a vector of length k
, where k
is the number of random effects terms. The i
th element is a matrix of size vᵢ × ℓᵢ
where vᵢ
is the size of the vector-valued random effects for each of the ℓᵢ
levels of the grouping factor. Technically those values are the modes of the conditional distribution of the random effects given the observed data.
This function returns an array of k
three dimensional arrays, where the i
th array is of size vᵢ × vᵢ × ℓᵢ
. These are the diagonal blocks from the conditional variance-covariance matrix,
s² Λ(Λ'Z'ZΛ + I)⁻¹Λ'
condVar(fm1)
1-element Vector{Array{Float64, 3}}: [362.3104715146577] [362.3104715146577] [362.3104715146577] [362.3104715146577] [362.3104715146577] [362.3104715146577]
Case-wise diagnostics and residual degrees of freedom
The leverage
values
StatsBase.leverage
— Functionleverage(model::RegressionModel)
Return the diagonal of the projection matrix of the model.
leverage(fm1)
30-element Vector{Float64}: 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 ⋮ 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486 0.15650534392640486
are used in diagnostics for linear regression models to determine cases that exert a strong influence on their own predicted response.
The documentation refers to a "projection". For a linear model without random effects the fitted values are obtained by orthogonal projection of the response onto the column span of the model matrix and the sum of the leverage values is the dimension of this column span. That is, the sum of the leverage values is the rank of the model matrix and n - sum(leverage(m))
is the degrees of freedom for residuals. The sum of the leverage values is also the trace of the so-called "hat" matrix, H
. (The name "hat matrix" reflects the fact that $\hat{\mathbf{y}} = \mathbf{H} \mathbf{y}$. That is, H
puts a hat on y
.)
For a linear mixed model the sum of the leverage values will be between p
, the rank of the fixed-effects model matrix, and p + q
where q
is the total number of random effects. This number does not represent a dimension (or "degrees of freedom") of a linear subspace of all possible fitted values because the projection is not an orthogonal projection. Nevertheless, it is a reasonable measure of the effective degrees of freedom of the model and n - sum(leverage(m))
can be considered the effective residual degrees of freedom.
For model fm1
the dimensions are
n, p, q, k = size(fm1)
(30, 1, 6, 1)
which implies that the sum of the leverage values should be in the range [1, 7]. The actual value is
sum(leverage(fm1))
4.695160317792145
For model fm2
the dimensions are
n, p, q, k = size(fm2)
(180, 2, 36, 1)
providing a range of [2, 38] for the effective degrees of freedom for the model. The observed value is
sum(leverage(fm2))
28.611525857134506
When a model converges to a singular covariance, such as
fm3 = fit(MixedModel, @formula(yield ~ 1+(1|batch)), MixedModels.dataset(:dyestuff2))
Linear mixed model fit by maximum likelihood yield ~ 1 + (1 | batch) logLik -2 logLik AIC AICc BIC -81.4365 162.8730 168.8730 169.7961 173.0766 Variance components: Column Variance Std.Dev. batch (Intercept) 0.00000 0.00000 Residual 13.34610 3.65323 Number of obs: 30; levels of grouping factors: 6 Fixed-effects parameters: ─────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ─────────────────────────────────────────────── (Intercept) 5.6656 0.666986 8.49 <1e-16 ───────────────────────────────────────────────
the effective degrees of freedom is the lower bound.
sum(leverage(fm3))
0.9999999999999998
Models for which the estimates of the variances of the random effects are large relative to the residual variance have effective degrees of freedom close to the upper bound.
fm4 = fit(MixedModel, @formula(diameter ~ 1+(1|plate)+(1|sample)),
MixedModels.dataset(:penicillin))
Linear mixed model fit by maximum likelihood diameter ~ 1 + (1 | plate) + (1 | sample) logLik -2 logLik AIC AICc BIC -166.0942 332.1883 340.1883 340.4761 352.0676 Variance components: Column Variance Std.Dev. plate (Intercept) 0.714979 0.845565 sample (Intercept) 3.135194 1.770648 Residual 0.302426 0.549933 Number of obs: 144; levels of grouping factors: 24, 6 Fixed-effects parameters: ───────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ───────────────────────────────────────────────── (Intercept) 22.9722 0.744596 30.85 <1e-99 ─────────────────────────────────────────────────
sum(leverage(fm4))
27.46531792571996
Also, a model fit by the REML criterion generally has larger estimates of the variance components and hence a larger effective degrees of freedom.
fm4r = fit(MixedModel, @formula(diameter ~ 1+(1|plate)+(1|sample)),
MixedModels.dataset(:penicillin), REML=true)
Linear mixed model fit by REML diameter ~ 1 + (1 | plate) + (1 | sample) REML criterion at convergence: 330.8605889909948 Variance components: Column Variance Std.Dev. plate (Intercept) 0.716908 0.846704 sample (Intercept) 3.730909 1.931556 Residual 0.302415 0.549923 Number of obs: 144; levels of grouping factors: 24, 6 Fixed-effects parameters: ───────────────────────────────────────────────── Coef. Std. Error z Pr(>|z|) ───────────────────────────────────────────────── (Intercept) 22.9722 0.808572 28.41 <1e-99 ─────────────────────────────────────────────────
sum(leverage(fm4r))
27.472361770234787