Prediction and simulation in Mixed-Effects Models
We recommend the MixedModelsSim.jl package and associated documentation for useful tools in constructing designs to simulate. For now, we'll use the sleep study data as a starting point.
using DataFrames
using MixedModels
using StatsBase
# use a DataFrame to make it easier to change things later
slp = DataFrame(MixedModels.dataset(:sleepstudy))
slpm = fit(MixedModel, @formula(reaction ~ 1 + days + (1|subj)), slp)
Linear mixed model fit by maximum likelihood
reaction ~ 1 + days + (1 | subj)
logLik -2 logLik AIC AICc BIC
-897.0393 1794.0786 1802.0786 1802.3072 1814.8505
Variance components:
Column Variance Std.Dev.
subj (Intercept) 1296.8707 36.0121
Residual 954.5278 30.8954
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
──────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
──────────────────────────────────────────────────
(Intercept) 251.405 9.50619 26.45 <1e-99
days 10.4673 0.801735 13.06 <1e-38
──────────────────────────────────────────────────
Prediction
The simplest form of prediction are the fitted values from the model: they are indeed the model's predictions for the observed data.
predict(slpm) ≈ fitted(slpm)
true
When generalizing to new data, we need to consider what happens if there are new, previously unobserved levels of the grouping variable(s). MixedModels.jl provides three options:
:error
: error on encountering unobserved levels:population
: use population values (i.e. only the fixed effects) for observations with unobserved levels:missing
: returnmissing
for observations with unobserved levels.
Providing either no prediction (:error
, :missing
) or providing the population-level values seem to be the most reasonable ways for predicting new values. For simulating new values based on previous estimates of the variance components, use simulate
.
In the case where there are no new levels of the grouping variable, all three of these methods provide the same results:
predict(slpm, slp; new_re_levels=:population) ≈ fitted(slpm)
true
predict(slpm, slp; new_re_levels=:missing) ≈ fitted(slpm)
true
predict(slpm, slp; new_re_levels=:error) ≈ fitted(slpm)
true
In the case where there are new levels of the grouping variable, these methods differ.
# create a new level
slp2 = transform(slp, :subj => ByRow(x -> (x == "S308" ? "NEW" : x)) => :subj)
180×3 DataFrame
Row │ subj days reaction
│ String Int8 Float64
─────┼────────────────────────
1 │ NEW 0 249.56
2 │ NEW 1 258.705
3 │ NEW 2 250.801
4 │ NEW 3 321.44
5 │ NEW 4 356.852
6 │ NEW 5 414.69
7 │ NEW 6 382.204
8 │ NEW 7 290.149
⋮ │ ⋮ ⋮ ⋮
174 │ S372 3 310.632
175 │ S372 4 287.173
176 │ S372 5 329.608
177 │ S372 6 334.482
178 │ S372 7 343.22
179 │ S372 8 369.142
180 │ S372 9 364.124
165 rows omitted
try
predict(slpm, slp2; new_re_levels=:error)
catch e
show(e)
end
ArgumentError("New level enountered in subj")
predict(slpm, slp2; new_re_levels=:missing)
180-element Vector{Union{Missing, Float64}}:
missing
missing
missing
missing
missing
missing
missing
missing
missing
missing
⋮
279.922125577311
290.38941153690695
300.85669749650293
311.32398345609886
321.79126941569484
332.2585553752908
342.72584133488675
353.19312729448274
363.66041325407866
predict(slpm, slp2; new_re_levels=:population)
180-element Vector{Float64}:
251.4051048484854
261.8723908080814
272.3396767676773
282.8069627272733
293.2742486868692
303.7415346464652
314.2088206060612
324.6761065656571
335.1433925252531
345.610678484849
⋮
279.922125577311
290.38941153690695
300.85669749650293
311.32398345609886
321.79126941569484
332.2585553752908
342.72584133488675
353.19312729448274
363.66041325407866
Currently, we do not support predicting based on a subset of the random effects.
predict
is deterministic (within the constraints of floating point) and never adds noise to the result. If you want to construct prediction intervals, then simulate
will generate new data with noise (including new values of the random effects).
For generalized linear mixed models, there is an additional keyword argument to predict
: type
specifies whether the predictions are returned on the scale of the linear predictor (:linpred
) or on the level of the response (:response)
(i.e. the level at which the values were originally observed).
cbpp = DataFrame(MixedModels.dataset(:cbpp))
cbpp.rate = cbpp.incid ./ cbpp.hsz
gm = fit(MixedModel, @formula(rate ~ 1 + period + (1|herd)), cbpp, Binomial(), wts=float(cbpp.hsz))
predict(gm, cbpp; type=:response) ≈ fitted(gm)
false
logit(x) = log(x / (1 - x))
predict(gm, cbpp; type=:linpred) ≈ logit.(fitted(gm))
false
Simulation
In contrast to predict
, simulate
and simulate!
introduce randomness. This randomness occurs both at the level of the observation-level (residual) variance and at the level of the random effects, where new conditional modes are sampled based on the specified covariance parameter (θ; see Details of the parameter estimation), which defaults to the estimated value of the model. For reproducibility, we specify a pseudorandom generator here; if none is provided, the global PRNG is taken as the default.
The simplest example of simulate
takes a fitted model and generates a new response vector based on the existing model matrices combined with noise.
using Random
ynew = simulate(MersenneTwister(42), slpm)
180-element Vector{Float64}:
283.00864553839773
296.92520636955913
321.96088453031666
322.33650388844745
396.9842691073609
317.1515378204674
348.51327076550524
378.2824583013714
302.3001679632582
425.39060424137836
⋮
314.68559367410927
350.03193420209277
293.64981943623627
375.40195060061774
324.5823728056021
311.10278099074145
338.76223251677374
345.3556040031296
301.2871942587682
The simulated response can also be placed in a pre-allocated vector:
ynew2 = zeros(nrow(slp))
simulate!(MersenneTwister(42), ynew2, slpm)
ynew2 ≈ ynew
true
Or even directly replace the previous response vector in a model, at which point the model must be refit to the new values:
slpm2 = deepcopy(slpm)
refit!(simulate!(MersenneTwister(42), slpm2))
Linear mixed model fit by maximum likelihood
reaction ~ 1 + days + (1 | subj)
logLik -2 logLik AIC AICc BIC
-903.1987 1806.3974 1814.3974 1814.6259 1827.1692
Variance components:
Column Variance Std.Dev.
subj (Intercept) 2420.4311 49.1979
Residual 964.3707 31.0543
Number of obs: 180; levels of grouping factors: 18
Fixed-effects parameters:
───────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
───────────────────────────────────────────────────
(Intercept) 263.59 12.3684 21.31 <1e-99
days 9.35638 0.805858 11.61 <1e-30
───────────────────────────────────────────────────
This inplace simulation actually forms the basis of parametricbootstrap
.
Finally, we can also simulate the response from entirely new data.
df = DataFrame(days = repeat(1:10, outer=20), subj=repeat(1:20, inner=10))
df[!, :subj] = string.("S", lpad.(df.subj, 2, "0"))
df[!, :reaction] .= 0
df
200×3 DataFrame
Row │ days subj reaction
│ Int64 String Int64
─────┼─────────────────────────
1 │ 1 S01 0
2 │ 2 S01 0
3 │ 3 S01 0
4 │ 4 S01 0
5 │ 5 S01 0
6 │ 6 S01 0
7 │ 7 S01 0
8 │ 8 S01 0
⋮ │ ⋮ ⋮ ⋮
194 │ 4 S20 0
195 │ 5 S20 0
196 │ 6 S20 0
197 │ 7 S20 0
198 │ 8 S20 0
199 │ 9 S20 0
200 │ 10 S20 0
185 rows omitted
ysim = simulate(MersenneTwister(42), slpm, df)
200-element Vector{Float64}:
262.93578249909865
276.85234333026
301.8880214910175
302.2636408491483
376.91140606806186
297.07867478116833
328.4404077262061
358.2095952620723
282.2273049239591
405.3177412020793
⋮
336.4096572490652
274.01980636706577
232.79273156578114
281.77385851062616
296.8405267395686
379.16601401109307
305.03738358148354
358.38445371575614
381.723677467381
Note that this is a convenience method for creating a new model and then using the parameters from the old model to call simulate
on that model. In other words, this method incurs the cost of constructing a new model and then discarding it. If you could re-use that model (e.g., fitting that model as part of a simulation study), it often makes sense to do these steps to perform these steps explicitly and avoid the unnecessary construction and discarding of an intermediate model:
msim = LinearMixedModel(@formula(reaction ~ 1 + days + (1|subj)), df)
simulate!(MersenneTwister(42), msim; θ=slpm.θ, β=slpm.β, σ=slpm.σ)
response(msim) ≈ ysim
true
fit!(msim)
Linear mixed model fit by maximum likelihood
reaction ~ 1 + days + (1 | subj)
logLik -2 logLik AIC AICc BIC
-996.0696 1992.1392 2000.1392 2000.3443 2013.3325
Variance components:
Column Variance Std.Dev.
subj (Intercept) 663.5403 25.7593
Residual 1012.9883 31.8275
Number of obs: 200; levels of grouping factors: 20
Fixed-effects parameters:
───────────────────────────────────────────────────
Coef. Std. Error z Pr(>|z|)
───────────────────────────────────────────────────
(Intercept) 259.607 7.53747 34.44 <1e-99
days 9.46755 0.783538 12.08 <1e-32
───────────────────────────────────────────────────
For simulating from generalized linear mixed models, there is no type
option because the observation-level always occurs at the level of the response and not of the linear predictor.
Simulating the model response in place may not yield the same result as simulating into a pre-allocated or new vector, depending on choice of pseudorandom number generator. Random number generation in Julia allows optimization based on type, and the internal storage type of the model response (currently a view into a matrix storing the concatenated fixed-effects model matrix and the response) may not match the type of a pre-allocated or new vector. See also discussion here.
All the methods that take new data as a table construct an additional MixedModel
behind the scenes, even when the new data is exactly the same as the data that the model was fitted to. For the simulation methods in particular, these thus form a convenience wrapper for constructing a new model and calling simulate
without new data on that model with the parameters from the original model.