GLM Documentation

GLM Documentation

Installation

Pkg.add("GLM")

will install this package and its dependencies, which includes the Distributions package.

The RDatasets package is useful for fitting models on standard R datasets to compare the results with those from R.

Fitting GLM models

To fit a Generalized Linear Model (GLM), use the function, glm(formula, data, family, link), where,

An intercept is included in any GLM by default.

Methods applied to fitted models

Many of the methods provided by this package have names similar to those in R.

Minimal examples

Ordinary Least Squares Regression:

julia> using DataFrames, GLM

julia> data = DataFrame(X=[1,2,3], Y=[2,4,7])
3×2 DataFrames.DataFrame
│ Row │ X │ Y │
├─────┼───┼───┤
│ 1   │ 1 │ 2 │
│ 2   │ 2 │ 4 │
│ 3   │ 3 │ 7 │

julia> ols = lm(@formula(Y ~ X), data)
StatsModels.DataFrameRegressionModel{GLM.LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}

Formula: Y ~ 1 + X

Coefficients:
              Estimate Std.Error  t value Pr(>|t|)
(Intercept)  -0.666667   0.62361 -1.06904   0.4788
X                  2.5  0.288675  8.66025   0.0732

julia> stderror(ols)
2-element Array{Float64,1}:
 0.62361
 0.288675

julia> predict(ols)
3-element Array{Float64,1}:
 1.83333
 4.33333
 6.83333

<!– Andreas Noack: As of 9 May 2018 this example doesn't work so I've temporarily commented it out julia> newX = DataFrame(X=[2,3,4]);

julia> predict(ols, newX, :confint) 3×3 Array{Float64,2}: 4.33333 1.33845 7.32821 6.83333 2.09801 11.5687 9.33333 1.40962 17.257 The columns of the matrix are prediction, 95% lower and upper confidence bounds –>

Probit Regression:

julia> data = DataFrame(X=[1,2,3], Y=[1,0,1])
3×2 DataFrames.DataFrame
│ Row │ X │ Y │
├─────┼───┼───┤
│ 1   │ 1 │ 1 │
│ 2   │ 2 │ 0 │
│ 3   │ 3 │ 1 │

julia> probit = glm(@formula(Y ~ X), data, Binomial(), ProbitLink())
StatsModels.DataFrameRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Array{Float64,1},Distributions.Binomial{Float64},GLM.ProbitLink},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}

Formula: Y ~ 1 + X

Coefficients:
                 Estimate Std.Error      z value Pr(>|z|)
(Intercept)      0.430727   1.98019     0.217518   0.8278
X            -3.64399e-19   0.91665 -3.97534e-19   1.0000

Other examples

An example of a simple linear model in R is

> coef(summary(lm(optden ~ carb, Formaldehyde)))
               Estimate  Std. Error    t value     Pr(>|t|)
(Intercept) 0.005085714 0.007833679  0.6492115 5.515953e-01
carb        0.876285714 0.013534536 64.7444207 3.409192e-07

The corresponding model with the GLM package is

julia> using GLM, RDatasets

julia> form = dataset("datasets", "Formaldehyde")
6×2 DataFrames.DataFrame
│ Row │ Carb │ OptDen │
├─────┼──────┼────────┤
│ 1   │ 0.1  │ 0.086  │
│ 2   │ 0.3  │ 0.269  │
│ 3   │ 0.5  │ 0.446  │
│ 4   │ 0.6  │ 0.538  │
│ 5   │ 0.7  │ 0.626  │
│ 6   │ 0.9  │ 0.782  │

julia> lm1 = fit(LinearModel, @formula(OptDen ~ Carb), form)
StatsModels.DataFrameRegressionModel{GLM.LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}

Formula: OptDen ~ 1 + Carb

Coefficients:
               Estimate  Std.Error  t value Pr(>|t|)
(Intercept)  0.00508571 0.00783368 0.649211   0.5516
Carb           0.876286  0.0135345  64.7444    <1e-6

julia> confint(lm1)
2×2 Array{Float64,2}:
 -0.0166641  0.0268355
  0.838708   0.913864

A more complex example in R is

> coef(summary(lm(sr ~ pop15 + pop75 + dpi + ddpi, LifeCycleSavings)))
                 Estimate   Std. Error    t value     Pr(>|t|)
(Intercept) 28.5660865407 7.3545161062  3.8841558 0.0003338249
pop15       -0.4611931471 0.1446422248 -3.1885098 0.0026030189
pop75       -1.6914976767 1.0835989307 -1.5609998 0.1255297940
dpi         -0.0003369019 0.0009311072 -0.3618293 0.7191731554
ddpi         0.4096949279 0.1961971276  2.0881801 0.0424711387

with the corresponding Julia code

julia> LifeCycleSavings = dataset("datasets", "LifeCycleSavings")
50×6 DataFrames.DataFrame
│ Row │ Country        │ SR    │ Pop15 │ Pop75 │ DPI     │ DDPI  │
├─────┼────────────────┼───────┼───────┼───────┼─────────┼───────┤
│ 1   │ Australia      │ 11.43 │ 29.35 │ 2.87  │ 2329.68 │ 2.87  │
│ 2   │ Austria        │ 12.07 │ 23.32 │ 4.41  │ 1507.99 │ 3.93  │
│ 3   │ Belgium        │ 13.17 │ 23.8  │ 4.43  │ 2108.47 │ 3.82  │
│ 4   │ Bolivia        │ 5.75  │ 41.89 │ 1.67  │ 189.13  │ 0.22  │
│ 5   │ Brazil         │ 12.88 │ 42.19 │ 0.83  │ 728.47  │ 4.56  │
│ 6   │ Canada         │ 8.79  │ 31.72 │ 2.85  │ 2982.88 │ 2.43  │
│ 7   │ Chile          │ 0.6   │ 39.74 │ 1.34  │ 662.86  │ 2.67  │
│ 8   │ China          │ 11.9  │ 44.75 │ 0.67  │ 289.52  │ 6.51  │
⋮
│ 42  │ Tunisia        │ 2.81  │ 46.12 │ 1.21  │ 249.87  │ 1.13  │
│ 43  │ United Kingdom │ 7.81  │ 23.27 │ 4.46  │ 1813.93 │ 2.01  │
│ 44  │ United States  │ 7.56  │ 29.81 │ 3.43  │ 4001.89 │ 2.45  │
│ 45  │ Venezuela      │ 9.22  │ 46.4  │ 0.9   │ 813.39  │ 0.53  │
│ 46  │ Zambia         │ 18.56 │ 45.25 │ 0.56  │ 138.33  │ 5.14  │
│ 47  │ Jamaica        │ 7.72  │ 41.12 │ 1.73  │ 380.47  │ 10.23 │
│ 48  │ Uruguay        │ 9.24  │ 28.13 │ 2.72  │ 766.54  │ 1.88  │
│ 49  │ Libya          │ 8.89  │ 43.69 │ 2.07  │ 123.58  │ 16.71 │
│ 50  │ Malaysia       │ 4.71  │ 47.2  │ 0.66  │ 242.69  │ 5.08  │

julia> fm2 = fit(LinearModel, @formula(SR ~ Pop15 + Pop75 + DPI + DDPI), LifeCycleSavings)
StatsModels.DataFrameRegressionModel{GLM.LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}

Formula: SR ~ 1 + Pop15 + Pop75 + DPI + DDPI

Coefficients:
                 Estimate   Std.Error   t value Pr(>|t|)
(Intercept)       28.5661     7.35452   3.88416   0.0003
Pop15           -0.461193    0.144642  -3.18851   0.0026
Pop75             -1.6915      1.0836    -1.561   0.1255
DPI          -0.000336902 0.000931107 -0.361829   0.7192
DDPI             0.409695    0.196197   2.08818   0.0425

The glm function (or equivalently, fit(GeneralizedLinearModel, ...)) works similarly to the R glm function except that the family argument is replaced by a Distribution type and, optionally, a Link type. The first example from ?glm in R is

glm> ## Dobson (1990) Page 93: Randomized Controlled Trial :
glm> counts <- c(18,17,15,20,10,20,25,13,12)

glm> outcome <- gl(3,1,9)

glm> treatment <- gl(3,3)

glm> print(d.AD <- data.frame(treatment, outcome, counts))
  treatment outcome counts
1         1       1     18
2         1       2     17
3         1       3     15
4         2       1     20
5         2       2     10
6         2       3     20
7         3       1     25
8         3       2     13
9         3       3     12

glm> glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())

glm> anova(glm.D93)
Analysis of Deviance Table

Model: poisson, link: log

Response: counts

Terms added sequentially (first to last)


          Df Deviance Resid. Df Resid. Dev
NULL                          8    10.5814
outcome    2   5.4523         6     5.1291
treatment  2   0.0000         4     5.1291

glm> ## No test:
glm> summary(glm.D93)

Call:
glm(formula = counts ~ outcome + treatment, family = poisson())

Deviance Residuals:
       1         2         3         4         5         6         7         8  
-0.67125   0.96272  -0.16965  -0.21999  -0.95552   1.04939   0.84715  -0.09167  
       9  
-0.96656  

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.045e+00  1.709e-01  17.815   <2e-16 ***
outcome2    -4.543e-01  2.022e-01  -2.247   0.0246 *  
outcome3    -2.930e-01  1.927e-01  -1.520   0.1285    
treatment2   3.795e-16  2.000e-01   0.000   1.0000    
treatment3   3.553e-16  2.000e-01   0.000   1.0000    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 10.5814  on 8  degrees of freedom
Residual deviance:  5.1291  on 4  degrees of freedom
AIC: 56.761

Number of Fisher Scoring iterations: 4

In Julia this becomes

julia> using DataFrames, CategoricalArrays, GLM

julia> dobson = DataFrame(Counts    = [18.,17,15,20,10,20,25,13,12],
                          Outcome   = categorical([1,2,3,1,2,3,1,2,3]),
                          Treatment = categorical([1,1,1,2,2,2,3,3,3]))
9×3 DataFrames.DataFrame
│ Row │ Counts │ Outcome │ Treatment │
├─────┼────────┼─────────┼───────────┤
│ 1   │ 18.0   │ 1       │ 1         │
│ 2   │ 17.0   │ 2       │ 1         │
│ 3   │ 15.0   │ 3       │ 1         │
│ 4   │ 20.0   │ 1       │ 2         │
│ 5   │ 10.0   │ 2       │ 2         │
│ 6   │ 20.0   │ 3       │ 2         │
│ 7   │ 25.0   │ 1       │ 3         │
│ 8   │ 13.0   │ 2       │ 3         │
│ 9   │ 12.0   │ 3       │ 3         │


julia> gm1 = fit(GeneralizedLinearModel, @formula(Counts ~ Outcome + Treatment), dobson, Poisson())
StatsModels.DataFrameRegressionModel{GLM.GeneralizedLinearModel{GLM.GlmResp{Array{Float64,1},Distributions.Poisson{Float64},GLM.LogLink},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}

Formula: Counts ~ 1 + Outcome + Treatment

Coefficients:
                 Estimate Std.Error     z value Pr(>|z|)
(Intercept)       3.04452  0.170899     17.8148   <1e-70
Outcome: 2      -0.454255  0.202171    -2.24689   0.0246
Outcome: 3      -0.292987  0.192742     -1.5201   0.1285
Treatment: 2  4.61065e-16       0.2 2.30532e-15   1.0000
Treatment: 3  3.44687e-17       0.2 1.72344e-16   1.0000

julia> deviance(gm1)
5.129141077001145

Typical distributions for use with glm and their canonical link functions are

Bernoulli (LogitLink)
 Binomial (LogitLink)
    Gamma (InverseLink)
   Normal (IdentityLink)
  Poisson (LogLink)

Currently the available Link types are

CauchitLink
CloglogLink
IdentityLink
InverseLink
LogitLink
LogLink
ProbitLink
SqrtLink

Separation of response object and predictor object

The general approach in this code is to separate functionality related to the response from that related to the linear predictor. This allows for greater generality by mixing and matching different subtypes of the abstract type LinPred and the abstract type ModResp.

A LinPred type incorporates the parameter vector and the model matrix. The parameter vector is a dense numeric vector but the model matrix can be dense or sparse. A LinPred type must incorporate some form of a decomposition of the weighted model matrix that allows for the solution of a system X'W * X * delta=X'wres where W is a diagonal matrix of "X weights", provided as a vector of the square roots of the diagonal elements, and wres is a weighted residual vector.

Currently there are two dense predictor types, DensePredQR and DensePredChol, and the usual caveats apply. The Cholesky version is faster but somewhat less accurate than that QR version. The skeleton of a distributed predictor type is in the code but not yet fully fleshed out. Because Julia by default uses OpenBLAS, which is already multi-threaded on multicore machines, there may not be much advantage in using distributed predictor types.

A ModResp type must provide methods for the wtres and sqrtxwts generics. Their values are the arguments to the updatebeta methods of the LinPred types. The Float64 value returned by updatedelta is the value of the convergence criterion.

Similarly, LinPred types must provide a method for the linpred generic. In general linpred takes an instance of a LinPred type and a step factor. Methods that take only an instance of a LinPred type use a default step factor of 1. The value of linpred is the argument to the updatemu method for ModResp types. The updatemu method returns the updated deviance.

API

Types defined in the package

GLM.LinearModelType.
LinearModel

A combination of a LmResp and a LinPred

Members

  • rr: a LmResp object

  • pp: a LinPred object

source
GLM.LmRespType.
LmResp

Encapsulates the response for a linear model

Members

  • mu: current value of the mean response vector or fitted value

  • offset: optional offset added to the linear predictor to form mu

  • wts: optional vector of prior weights

  • y: observed response vector

Either or both offset and wts may be of length 0

source
GLM.LinPredType.
LinPred

Abstract type representing a linear predictor

source
GLM.GlmRespType.
GlmResp

The response vector and various derived vectors in a generalized linear model.

source
GLM.DensePredQRType.
DensePredQR

A LinPred type with a dense, unpivoted QR decomposition of X

Members

  • X: Model matrix of size n × p with n ≥ p. Should be full column rank.

  • beta0: base coefficient vector of length p

  • delbeta: increment to coefficient vector, also of length p

  • scratchbeta: scratch vector of length p, used in linpred! method

  • qr: a QRCompactWY object created from X, with optional row weights.

source
DensePredChol{T}

A LinPred type with a dense Cholesky factorization of X'X

Members

  • X: model matrix of size n × p with n ≥ p. Should be full column rank.

  • beta0: base coefficient vector of length p

  • delbeta: increment to coefficient vector, also of length p

  • scratchbeta: scratch vector of length p, used in linpred! method

  • chol: a Base.LinAlg.Cholesky object created from X'X, possibly using row weights.

  • scratchm1: scratch Matrix{T} of the same size as X

  • scratchm2: scratch Matrix{T} os the same size as X'X

source

Constructors for models

The most general approach to fitting a model is with the fit function, as in

julia> fit(LinearModel, hcat(ones(10), 1:10), randn(MersenneTwister(12321), 10))
GLM.LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}}:

Coefficients:
      Estimate Std.Error  t value Pr(>|t|)
x1    0.717436  0.775175 0.925515   0.3818
x2   -0.152062  0.124931 -1.21717   0.2582

This model can also be fit as

julia> lm(hcat(ones(10), 1:10), randn(MersenneTwister(12321), 10))
GLM.LinearModel{GLM.LmResp{Array{Float64,1}},GLM.DensePredChol{Float64,Base.LinAlg.Cholesky{Float64,Array{Float64,2}}}}:

Coefficients:
      Estimate Std.Error  t value Pr(>|t|)
x1    0.717436  0.775175 0.925515   0.3818
x2   -0.152062  0.124931 -1.21717   0.2582

Methods for model updating

GLM.delbeta!Function.
delbeta!(p::LinPred, r::Vector)

Evaluate and return p.delbeta the increment to the coefficient vector from residual r

source
GLM.linpred!Function.
linpred!(out, p::LinPred, f::Real=1.0)

Overwrite out with the linear predictor from p with factor f

The effective coefficient vector, p.scratchbeta, is evaluated as p.beta0 .+ f * p.delbeta, and out is updated to p.X * p.scratchbeta

source
GLM.linpredFunction.
linpred(p::LinPred, f::Read=1.0)

Return the linear predictor p.X * (p.beta0 .+ f * p.delbeta)

source
GLM.installbeta!Function.
installbeta!(p::LinPred, f::Real=1.0)

Install pbeta0 .+= f * p.delbeta and zero out p.delbeta. Return the updated p.beta0.

source
GLM.cancancelFunction.
cancancel(r::GlmResp{V,D,L})

Returns true if dμ/dη for link L is the variance function for distribution D

When L is the canonical link for D the derivative of the inverse link is a multiple of the variance function for D. If they are the same a numerator and denominator term in the expression for the working weights will cancel.

source
GLM.updateμ!Function.
updateμ!{T<:FPVector}(r::GlmResp{T}, linPr::T)

Update the mean, working weights and working residuals, in r given a value of the linear predictor, linPr.

source
GLM.wrkrespFunction.
wrkresp(r::GlmResp)

The working response, r.eta + r.wrkresid - r.offset.

source
GLM.wrkresp!Function.
wrkresp!{T<:FPVector}(v::T, r::GlmResp{T})

Overwrite v with the working response of r

source
GLM.dispersionFunction.
dispersion(m::AbstractGLM, sqr::Bool=false)

Return the estimated dispersion (or scale) parameter for a model's distribution, generally written σ² for linear models and ϕ for generalized linear models. It is, by definition, equal to 1 for the Bernoulli, Binomial, and Poisson families.

If sqr is true, the squared dispersion parameter is returned.

source

Links and methods applied to them

GLM.LinkType.
Link

An abstract type whose subtypes determine methods for linkfun, linkinv, mueta, and inverselink.

source
GLM.Link01Type.
Link01

An abstract subtype of Link which are links defined on (0, 1)

source
GLM.CauchitLinkType.
CauchitLink

A Link01 corresponding to the standard Cauchy distribution, Distributions.Cauchy.

source
GLM.CloglogLinkType.
CloglogLink

A Link01 corresponding to the extreme value (or log-Wiebull) distribution. The link is the complementary log-log transformation, log(1 - log(-μ)).

source
IdentityLink

The canonical Link for the Normal distribution, defined as η = μ.

source
GLM.InverseLinkType.
InverseLink

The canonical Link for Distributions.Gamma distribution, defined as η = inv(μ).

source
InverseSquareLink

The canonical Link for Distributions.InverseGaussian distribution, defined as η = inv(abs2(μ)).

source
GLM.LogitLinkType.
LogitLink

The canonical Link01 for Distributions.Bernoulli and Distributions.Binomial. The inverse link, linkinv, is the c.d.f. of the standard logistic distribution, Distributions.Logistic.

source
GLM.LogLinkType.
LogLink

The canonical Link for Distributions.Poisson, defined as η = log(μ).

source
GLM.ProbitLinkType.
ProbitLink

A Link01 whose linkinv is the c.d.f. of the standard normal distribution, Distributions.Normal().

source
GLM.SqrtLinkType.
SqrtLink

A Link defined as η = √μ

source
GLM.linkfunFunction.
linkfun(L::Link, μ)

Return η, the value of the linear predictor for link L at mean μ.

Examples

julia> μ = inv(10):inv(5):1
0.1:0.2:0.9

julia> show(linkfun.(LogitLink(), μ))
[-2.19722, -0.847298, 0.0, 0.847298, 2.19722]
source
GLM.linkinvFunction.
linkinv(L::Link, η)

Return μ, the mean value, for link L at linear predictor value η.

Examples

julia> μ = inv(10):inv(5):1; showcompact(collect(μ))
[0.1, 0.3, 0.5, 0.7, 0.9]
julia> η = logit.(μ); showcompact(η)
[-2.19722, -0.847298, 0.0, 0.847298, 2.19722]
julia> showcompact(linkinv.(LogitLink(), η))
[0.1, 0.3, 0.5, 0.7, 0.9]
source
GLM.muetaFunction.
mueta(L::Link, η)

Return the derivative of linkinv, dμ/dη, for link L at linear predictor value η.

Examples

julia> showcompact(mueta(LogitLink(), 0.0))
0.25
julia> showcompact(mueta(CloglogLink(), 0.0))
0.367879
julia> showcompact(mueta(LogLink(), 2.0))
7.38906
source
GLM.inverselinkFunction.
inverselink(L::Link, η)

Return a 3-tuple of the inverse link, the derivative of the inverse link, and when appropriate, the variance function μ*(1 - μ).

The variance function is returned as NaN unless the range of μ is (0, 1)

Examples

julia> showcompact(inverselink(LogitLink(), 0.0))
(0.5, 0.25, 0.25)
julia> showcompact(inverselink(CloglogLink(), 0.0))
(0.632121, 0.367879, 0.232544)
julia> showcompact(inverselink(LogLink(), 2.0))
(7.38906, 7.38906, NaN)
source
GLM.canonicallinkFunction.
canonicallink(D::Distribution)

Return the canonical link for distribution D, which must be in the exponential family.

Examples

julia> canonicallink(Bernoulli())
GLM.LogitLink()
source
GLM.glmvarFunction.
glmvar(D::Distribution, μ)

Return the value of the variance function for D at μ

The variance of D at μ is the product of the dispersion parameter, ϕ, which does not depend on μ and the value of glmvar. In other words glmvar returns the factor of the variance that depends on μ.

Examples

julia> μ = inv(6):inv(3):1; showcompact(collect(μ))
[0.166667, 0.5, 0.833333]
julia> showcompact(glmvar.(Normal(), μ))    # constant for Normal()
[1.0, 1.0, 1.0]
julia> showcompact(glmvar.(Bernoulli(), μ)) # μ * (1 - μ) for Bernoulli()
[0.138889, 0.25, 0.138889]
julia> showcompact(glmvar.(Poisson(), μ))   # μ for Poisson()
[0.166667, 0.5, 0.833333]
source
GLM.mustartFunction.
mustart(D::Distribution, y, wt)

Return a starting value for μ.

For some distributions it is appropriate to set μ = y to initialize the IRLS algorithm but for others, notably the Bernoulli, the values of y are not allowed as values of μ and must be modified.

Examples

julia> showcompact(mustart(Bernoulli(), 0.0, 1))
0.25
julia> showcompact(mustart(Bernoulli(), 1.0, 1))
0.75
julia> showcompact(mustart(Binomial(), 0.0, 10))
0.0454545
julia> showcompact(mustart(Normal(), 0.0, 1))
0.0
source
GLM.devresidFunction.
devresid(D, y, μ)

Return the squared deviance residual of μ from y for distribution D

The deviance of a GLM can be evaluated as the sum of the squared deviance residuals. This is the principal use for these values. The actual deviance residual, say for plotting, is the signed square root of this value

sign(y - μ) * sqrt(devresid(D, y, μ))

Examples

julia> showcompact(devresid(Normal(), 0, 0.25))     # abs2(y - μ)
0.0625
julia> showcompact(devresid(Bernoulli(), 1, 0.75))  # -2log(μ) when y == 1
0.575364
julia> showcompact(devresid(Bernoulli(), 0, 0.25))  # -2log1p(-μ) = -2log(1-μ) when y == 0
0.575364
source
dispersion_parameter(D)  # not exported

Does distribution D have a separate dispersion parameter, ϕ?

Returns false for the Bernoulli, Binomial and Poisson distributions, true otherwise.

Examples

julia> show(GLM.dispersion_parameter(Normal()))
true
julia> show(GLM.dispersion_parameter(Bernoulli()))
false
source
GLM.loglik_obsFunction.
loglik_obs(D, y, μ, wt, ϕ)  # not exported

Returns wt * logpdf(D(μ, ϕ), y) where the parameters of D are derived from μ and ϕ.

The wt argument is a multiplier of the result except in the case of the Binomial where wt is the number of trials and μ is the proportion of successes.

The loglikelihood of a fitted model is the sum of these values over all the observations.

source