Miscellaneous Functions
StatsBase.rle
— Function.rle(v) -> (vals, lens)
Return the run-length encoding of a vector as a tuple. The first element of the tuple is a vector of values of the input and the second is the number of consecutive occurrences of each element.
Examples
julia> using StatsBase
julia> rle([1,1,1,2,2,3,3,3,3,2,2,2])
([1, 2, 3, 2], [3, 2, 4, 3])
StatsBase.inverse_rle
— Function.inverse_rle(vals, lens)
Reconstruct a vector from its run-length encoding (see rle
). vals
is a vector of the values and lens
is a vector of the corresponding run lengths.
StatsBase.levelsmap
— Function.levelsmap(a)
Construct a dictionary that maps each of the n
unique values in a
to a number between 1 and n
.
StatsBase.indexmap
— Function.indexmap(a)
Construct a dictionary that maps each unique value in a
to the index of its first occurrence in a
.
StatsBase.indicatormat
— Function.indicatormat(x, k::Integer; sparse=false)
Construct a boolean matrix I
of size (k, length(x))
such that I[x[i], i] = true
and all other elements are set to false
. If sparse
is true
, the output will be a sparse matrix, otherwise it will be dense (default).
Examples
julia> using StatsBase
julia> indicatormat([1 2 2], 2)
2×3 Array{Bool,2}:
true false false
false true true
indicatormat(x, c=sort(unique(x)); sparse=false)
Construct a boolean matrix I
of size (length(c), length(x))
. Let ci
be the index of x[i]
in c
. Then I[ci, i] = true
and all other elements are false
.
StatsBase.midpoints
— Function.StatsBase.midpoints(v)
Calculate the midpoints (pairwise mean of consecutive elements).